Enantioselective Synthesis of the Anti-inflammatory Agent (−)-Acanthoic Acid

Taotao Ling, a Chinmay Chowdhury, a Bryan A. Kramer, a Binh G. Vong, a Michael A. Palladino b and Emmanuel A. Theodorakis a*

a Department of Chemistry and Biochemistry, University of California, San Diego, 9500 Gilman Drive, La Jolla, California 92093-0358 and
b Nereus Pharmaceuticals, Inc, 9393 Towne Centre Drive, Suite 210, San Diego, CA 92121

Supporting Information

i. 1H and 13C NMR spectra for compounds:
 10, 15-18, 20, 22-25, 28-30, 32-48 and 1
 Pages 1-59

ii. X-Ray data for compounds 23, 28, 29, 41 and 42
 Pages 60-93
X-Ray data of compound 23

![Chemical structure diagram]

Table 1. Crystal data and structure refinement for 23

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C22 H23 N O5</td>
</tr>
<tr>
<td>Formula weight</td>
<td>381.41</td>
</tr>
<tr>
<td>Temperature</td>
<td>23°C</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2(1)</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td></td>
</tr>
<tr>
<td>a</td>
<td>8.841(7) Å</td>
</tr>
<tr>
<td>alpha</td>
<td>90°</td>
</tr>
<tr>
<td>b</td>
<td>8.758(7) Å</td>
</tr>
<tr>
<td>beta</td>
<td>95.26(7)°</td>
</tr>
<tr>
<td>c</td>
<td>12.444(11) Å</td>
</tr>
<tr>
<td>gamma</td>
<td>90°</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.80 x 0.45 x 0.20 mm</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.320 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.094 mm⁻¹</td>
</tr>
<tr>
<td>Volume, Z, F(000)</td>
<td>959.6(13) Å³, 2, 404</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>1.64 to 25.00 degrees</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>0 < h < 10, -10 < k < 0, -14 < l < 14</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>1940, 1554 observed [I>2sigma(I)]</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>1817 (Rint = 0.0204)</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>1817 / 1 / 255</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.032</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0453, WR2 = 0.1129</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0552, WR2 = 0.1219</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.64(207)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.179 and -0.212 e/Å³</td>
</tr>
<tr>
<td>Scan speed, range, type</td>
<td>5 degrees/minute, 0.6 degrees, Wyckoff</td>
</tr>
<tr>
<td>Background range, % time</td>
<td>0.6 degrees, 25% each side</td>
</tr>
</tbody>
</table>
Table 2. Atomic coordinates [x 10^4] and equivalent isotropic displacement parameters [Å^2 x 10^3] for 23. U(eq) is defined as one third of the trace of the orthogonalized U(ij) tensor.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>5418(3)</td>
<td>364(4)</td>
<td>1191(3)</td>
</tr>
<tr>
<td>O(2)</td>
<td>802(3)</td>
<td>5419(4)</td>
<td>-351(2)</td>
</tr>
<tr>
<td>O(3)</td>
<td>7359(3)</td>
<td>3449(4)</td>
<td>2059(2)</td>
</tr>
<tr>
<td>O(4)</td>
<td>3905(3)</td>
<td>1168(6)</td>
<td>3400(2)</td>
</tr>
<tr>
<td>O(5)</td>
<td>5568(3)</td>
<td>1081(4)</td>
<td>4835(2)</td>
</tr>
<tr>
<td>N(1)</td>
<td>6219(3)</td>
<td>2450(4)</td>
<td>3436(2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>4465(4)</td>
<td>1370(5)</td>
<td>1121(3)</td>
</tr>
<tr>
<td>C(2)</td>
<td>2950(4)</td>
<td>1180(5)</td>
<td>489(3)</td>
</tr>
<tr>
<td>C(3)</td>
<td>2313(4)</td>
<td>2685(4)</td>
<td>62(3)</td>
</tr>
<tr>
<td>C(4)</td>
<td>2246(3)</td>
<td>3904(4)</td>
<td>94(3)</td>
</tr>
<tr>
<td>C(5)</td>
<td>1723(4)</td>
<td>5426(5)</td>
<td>429(3)</td>
</tr>
<tr>
<td>C(6)</td>
<td>2255(7)</td>
<td>6891(6)</td>
<td>932(5)</td>
</tr>
<tr>
<td>C(7)</td>
<td>3647(9)</td>
<td>6843(6)</td>
<td>1638(5)</td>
</tr>
<tr>
<td>C(8)</td>
<td>4091(5)</td>
<td>5478(6)</td>
<td>2214(3)</td>
</tr>
<tr>
<td>C(9)</td>
<td>3785(4)</td>
<td>4026(5)</td>
<td>1608(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>4736(3)</td>
<td>2848(4)</td>
<td>1682(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>6216(3)</td>
<td>2933(5)</td>
<td>2369(3)</td>
</tr>
<tr>
<td>C(12)</td>
<td>1043(4)</td>
<td>3473(6)</td>
<td>1729(3)</td>
</tr>
<tr>
<td>C(13)</td>
<td>5101(4)</td>
<td>1536(6)</td>
<td>3827(3)</td>
</tr>
<tr>
<td>C(14)</td>
<td>6984(4)</td>
<td>1777(6)</td>
<td>5183(3)</td>
</tr>
<tr>
<td>C(15)</td>
<td>7612(4)</td>
<td>2464(5)</td>
<td>4186(3)</td>
</tr>
<tr>
<td>C(16)</td>
<td>8313(4)</td>
<td>4026(5)</td>
<td>4416(3)</td>
</tr>
<tr>
<td>C(17)</td>
<td>9627(4)</td>
<td>3870(4)</td>
<td>5281(3)</td>
</tr>
<tr>
<td>C(18)</td>
<td>10989(4)</td>
<td>3232(5)</td>
<td>5046(3)</td>
</tr>
<tr>
<td>C(19)</td>
<td>12171(5)</td>
<td>3061(6)</td>
<td>7118(3)</td>
</tr>
<tr>
<td>C(20)</td>
<td>12019(5)</td>
<td>3541(6)</td>
<td>6868(4)</td>
</tr>
<tr>
<td>C(21)</td>
<td>10673(5)</td>
<td>4171(6)</td>
<td>7118(3)</td>
</tr>
<tr>
<td>C(22)</td>
<td>9496(5)</td>
<td>4336(5)</td>
<td>6333(3)</td>
</tr>
</tbody>
</table>

Table 3. Bond lengths [Å] and angles [degrees] for 23

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-C(1)</td>
<td>1.216(5)</td>
<td></td>
</tr>
<tr>
<td>O(2)-C(5)</td>
<td>1.208(4)</td>
<td></td>
</tr>
<tr>
<td>O(3)-C(11)</td>
<td>1.202(4)</td>
<td></td>
</tr>
<tr>
<td>O(4)-C(13)</td>
<td>1.184(5)</td>
<td></td>
</tr>
<tr>
<td>O(5)-C(13)</td>
<td>1.344(5)</td>
<td></td>
</tr>
<tr>
<td>O(5)-C(14)</td>
<td>1.424(5)</td>
<td></td>
</tr>
<tr>
<td>N(1)-C(13)</td>
<td>1.394(5)</td>
<td></td>
</tr>
<tr>
<td>N(1)-C(11)</td>
<td>1.394(4)</td>
<td></td>
</tr>
<tr>
<td>N(1)-C(15)</td>
<td>1.476(4)</td>
<td></td>
</tr>
<tr>
<td>C(1)-C(10)</td>
<td>1.480(5)</td>
<td></td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.499(5)</td>
<td></td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.511(5)</td>
<td></td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.536(5)</td>
<td></td>
</tr>
<tr>
<td>C(4)-C(9)</td>
<td>1.530(4)</td>
<td></td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.531(6)</td>
<td></td>
</tr>
<tr>
<td>C(4)-C(12)</td>
<td>1.556(5)</td>
<td></td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.486(7)</td>
<td></td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.445(7)</td>
<td></td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.430(8)</td>
<td></td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.490(6)</td>
<td></td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.329(5)</td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>C(10)–C(11)</td>
<td>1.497(4)</td>
<td></td>
</tr>
<tr>
<td>C(14)–C(15)</td>
<td>1.528(5)</td>
<td></td>
</tr>
<tr>
<td>C(15)–C(16)</td>
<td>1.518(6)</td>
<td></td>
</tr>
<tr>
<td>C(16)–C(17)</td>
<td>1.515(5)</td>
<td></td>
</tr>
<tr>
<td>C(17)–C(18)</td>
<td>1.383(5)</td>
<td></td>
</tr>
<tr>
<td>C(17)–C(22)</td>
<td>1.387(5)</td>
<td></td>
</tr>
<tr>
<td>C(18)–C(19)</td>
<td>1.377(5)</td>
<td></td>
</tr>
<tr>
<td>C(19)–C(20)</td>
<td>1.369(7)</td>
<td></td>
</tr>
<tr>
<td>C(20)–C(21)</td>
<td>1.372(7)</td>
<td></td>
</tr>
<tr>
<td>C(21)–C(22)</td>
<td>1.368(6)</td>
<td></td>
</tr>
<tr>
<td>C(13)–O(5)–C(14)</td>
<td>110.1(3)</td>
<td></td>
</tr>
<tr>
<td>C(13)–N(1)–C(11)</td>
<td>124.6(3)</td>
<td></td>
</tr>
<tr>
<td>C(13)–N(1)–C(15)</td>
<td>111.2(3)</td>
<td></td>
</tr>
<tr>
<td>C(11)–N(1)–C(15)</td>
<td>121.9(3)</td>
<td></td>
</tr>
<tr>
<td>O(1)–C(1)–C(10)</td>
<td>121.2(3)</td>
<td></td>
</tr>
<tr>
<td>O(1)–C(1)–C(2)</td>
<td>122.5(4)</td>
<td></td>
</tr>
<tr>
<td>C(10)–C(1)–C(2)</td>
<td>116.3(3)</td>
<td></td>
</tr>
<tr>
<td>C(1)–C(2)–C(3)</td>
<td>112.0(3)</td>
<td></td>
</tr>
<tr>
<td>C(2)–C(3)–C(4)</td>
<td>113.1(3)</td>
<td></td>
</tr>
<tr>
<td>C(9)–C(4)–C(5)</td>
<td>112.7(3)</td>
<td></td>
</tr>
<tr>
<td>C(9)–C(4)–C(3)</td>
<td>110.1(3)</td>
<td></td>
</tr>
<tr>
<td>C(5)–C(4)–C(3)</td>
<td>109.7(3)</td>
<td></td>
</tr>
<tr>
<td>C(9)–C(4)–C(12)</td>
<td>107.6(3)</td>
<td></td>
</tr>
<tr>
<td>C(5)–C(4)–C(12)</td>
<td>106.0(3)</td>
<td></td>
</tr>
<tr>
<td>C(3)–C(4)–C(12)</td>
<td>110.7(3)</td>
<td></td>
</tr>
<tr>
<td>O(2)–C(5)–C(6)</td>
<td>120.4(4)</td>
<td></td>
</tr>
<tr>
<td>O(2)–C(5)–C(4)</td>
<td>119.1(4)</td>
<td></td>
</tr>
<tr>
<td>C(6)–C(5)–C(4)</td>
<td>120.3(3)</td>
<td></td>
</tr>
<tr>
<td>C(7)–C(6)–C(5)</td>
<td>116.7(4)</td>
<td></td>
</tr>
<tr>
<td>C(8)–C(7)–C(6)</td>
<td>120.5(5)</td>
<td></td>
</tr>
<tr>
<td>C(7)–C(8)–C(9)</td>
<td>115.6(3)</td>
<td></td>
</tr>
<tr>
<td>C(10)–C(9)–C(8)</td>
<td>122.9(3)</td>
<td></td>
</tr>
<tr>
<td>C(10)–C(9)–C(4)</td>
<td>120.6(3)</td>
<td></td>
</tr>
<tr>
<td>C(8)–C(9)–C(4)</td>
<td>116.3(3)</td>
<td></td>
</tr>
<tr>
<td>C(9)–C(10)–C(1)</td>
<td>124.9(3)</td>
<td></td>
</tr>
<tr>
<td>C(9)–C(10)–C(11)</td>
<td>121.0(3)</td>
<td></td>
</tr>
<tr>
<td>C(1)–C(10)–C(11)</td>
<td>114.1(3)</td>
<td></td>
</tr>
<tr>
<td>O(3)–C(11)–N(1)</td>
<td>119.5(3)</td>
<td></td>
</tr>
<tr>
<td>O(3)–C(11)–C(10)</td>
<td>123.5(3)</td>
<td></td>
</tr>
<tr>
<td>N(1)–C(11)–C(10)</td>
<td>117.0(3)</td>
<td></td>
</tr>
<tr>
<td>O(4)–C(13)–O(5)</td>
<td>121.6(4)</td>
<td></td>
</tr>
<tr>
<td>O(4)–C(13)–N(1)</td>
<td>129.2(4)</td>
<td></td>
</tr>
<tr>
<td>O(5)–C(13)–N(1)</td>
<td>109.2(3)</td>
<td></td>
</tr>
<tr>
<td>O(5)–C(14)–C(15)</td>
<td>107.2(3)</td>
<td></td>
</tr>
<tr>
<td>N(1)–C(15)–C(16)</td>
<td>115.4(3)</td>
<td></td>
</tr>
<tr>
<td>N(1)–C(15)–C(14)</td>
<td>99.5(3)</td>
<td></td>
</tr>
<tr>
<td>C(16)–C(15)–C(14)</td>
<td>112.0(3)</td>
<td></td>
</tr>
<tr>
<td>C(17)–C(16)–C(15)</td>
<td>109.0(3)</td>
<td></td>
</tr>
<tr>
<td>C(18)–C(17)–C(22)</td>
<td>117.9(3)</td>
<td></td>
</tr>
<tr>
<td>C(18)–C(17)–C(16)</td>
<td>120.8(3)</td>
<td></td>
</tr>
<tr>
<td>C(22)–C(17)–C(16)</td>
<td>121.3(3)</td>
<td></td>
</tr>
<tr>
<td>C(19)–C(18)–C(17)</td>
<td>120.7(4)</td>
<td></td>
</tr>
<tr>
<td>C(20)–C(19)–C(18)</td>
<td>120.3(4)</td>
<td></td>
</tr>
<tr>
<td>C(19)–C(20)–C(21)</td>
<td>119.8(4)</td>
<td></td>
</tr>
<tr>
<td>C(22)–C(21)–C(20)</td>
<td>119.9(4)</td>
<td></td>
</tr>
<tr>
<td>C(21)–C(22)–C(17)</td>
<td>121.3(4)</td>
<td></td>
</tr>
</tbody>
</table>
Table 4. Anisotropic displacement parameters [A^2 x 10^3] for 23. The anisotropic displacement factor exponent takes the form:
\[-2(\pi)^2 \left[(ha*)^2U11 + \ldots + 2hka*b*U12 \right] \]

<table>
<thead>
<tr>
<th></th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>72(2)</td>
<td>63(2)</td>
<td>100(2)</td>
<td>-3(2)</td>
<td>-13(2)</td>
<td>26(2)</td>
</tr>
<tr>
<td>O(2)</td>
<td>72(2)</td>
<td>75(2)</td>
<td>61(2)</td>
<td>-2(2)</td>
<td>-18(1)</td>
<td>23(2)</td>
</tr>
<tr>
<td>O(3)</td>
<td>38(1)</td>
<td>123(3)</td>
<td>50(1)</td>
<td>18(2)</td>
<td>2(1)</td>
<td>-14(2)</td>
</tr>
<tr>
<td>O(4)</td>
<td>52(2)</td>
<td>167(4)</td>
<td>77(2)</td>
<td>47(2)</td>
<td>-10(1)</td>
<td>-39(2)</td>
</tr>
<tr>
<td>O(5)</td>
<td>58(2)</td>
<td>111(3)</td>
<td>54(2)</td>
<td>31(2)</td>
<td>0(1)</td>
<td>-12(2)</td>
</tr>
<tr>
<td>N(1)</td>
<td>33(1)</td>
<td>72(2)</td>
<td>39(1)</td>
<td>10(2)</td>
<td>-2(1)</td>
<td>-2(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>48(2)</td>
<td>49(2)</td>
<td>53(2)</td>
<td>8(2)</td>
<td>-1(2)</td>
<td>4(2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>54(2)</td>
<td>47(2)</td>
<td>60(2)</td>
<td>-5(2)</td>
<td>-7(2)</td>
<td>-5(2)</td>
</tr>
<tr>
<td>C(3)</td>
<td>42(2)</td>
<td>50(2)</td>
<td>46(2)</td>
<td>-4(2)</td>
<td>-9(1)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>31(2)</td>
<td>50(2)</td>
<td>39(2)</td>
<td>-1(2)</td>
<td>-1(1)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>45(2)</td>
<td>54(2)</td>
<td>55(2)</td>
<td>-6(2)</td>
<td>3(2)</td>
<td>7(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>95(4)</td>
<td>56(3)</td>
<td>127(5)</td>
<td>-18(3)</td>
<td>-30(3)</td>
<td>16(3)</td>
</tr>
<tr>
<td>C(7)</td>
<td>173(7)</td>
<td>56(3)</td>
<td>115(5)</td>
<td>-7(3)</td>
<td>-62(4)</td>
<td>-25(4)</td>
</tr>
<tr>
<td>C(8)</td>
<td>57(2)</td>
<td>79(3)</td>
<td>69(3)</td>
<td>-36(3)</td>
<td>-10(2)</td>
<td>6(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>34(2)</td>
<td>57(2)</td>
<td>34(2)</td>
<td>-3(2)</td>
<td>3(1)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>33(2)</td>
<td>56(2)</td>
<td>33(2)</td>
<td>1(2)</td>
<td>0(1)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>34(2)</td>
<td>69(3)</td>
<td>40(2)</td>
<td>7(2)</td>
<td>2(1)</td>
<td>-1(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>46(2)</td>
<td>89(3)</td>
<td>59(2)</td>
<td>-2(2)</td>
<td>14(2)</td>
<td>-11(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>41(2)</td>
<td>97(3)</td>
<td>55(2)</td>
<td>19(2)</td>
<td>4(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>54(2)</td>
<td>88(3)</td>
<td>49(2)</td>
<td>17(2)</td>
<td>-4(2)</td>
<td>-2(2)</td>
</tr>
<tr>
<td>C(15)</td>
<td>35(2)</td>
<td>68(3)</td>
<td>40(2)</td>
<td>5(2)</td>
<td>-3(1)</td>
<td>5(2)</td>
</tr>
<tr>
<td>C(16)</td>
<td>52(2)</td>
<td>61(2)</td>
<td>52(2)</td>
<td>7(2)</td>
<td>-7(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(17)</td>
<td>49(2)</td>
<td>50(2)</td>
<td>47(2)</td>
<td>1(2)</td>
<td>-7(1)</td>
<td>3(2)</td>
</tr>
<tr>
<td>C(18)</td>
<td>55(2)</td>
<td>70(3)</td>
<td>55(2)</td>
<td>-13(2)</td>
<td>-2(2)</td>
<td>1(2)</td>
</tr>
<tr>
<td>C(19)</td>
<td>48(2)</td>
<td>74(3)</td>
<td>86(3)</td>
<td>-10(3)</td>
<td>-16(2)</td>
<td>8(2)</td>
</tr>
<tr>
<td>C(20)</td>
<td>73(3)</td>
<td>72(3)</td>
<td>67(3)</td>
<td>-1(2)</td>
<td>-32(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>C(21)</td>
<td>85(3)</td>
<td>79(3)</td>
<td>47(2)</td>
<td>-6(2)</td>
<td>-10(2)</td>
<td>-6(3)</td>
</tr>
<tr>
<td>C(22)</td>
<td>59(2)</td>
<td>66(3)</td>
<td>53(2)</td>
<td>-5(2)</td>
<td>1(2)</td>
<td>5(2)</td>
</tr>
</tbody>
</table>

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for 23

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(2A)</td>
<td>2245(4)</td>
<td>721(5)</td>
<td>947(3)</td>
<td>65</td>
</tr>
<tr>
<td>H(2B)</td>
<td>3055(4)</td>
<td>493(5)</td>
<td>-111(3)</td>
<td>65</td>
</tr>
<tr>
<td>H(3A)</td>
<td>1297(4)</td>
<td>2519(4)</td>
<td>-282(3)</td>
<td>56</td>
</tr>
<tr>
<td>H(3B)</td>
<td>2937(4)</td>
<td>3061(4)</td>
<td>-483(3)</td>
<td>56</td>
</tr>
<tr>
<td>H(6A)</td>
<td>2390(7)</td>
<td>7615(6)</td>
<td>359(5)</td>
<td>114</td>
</tr>
<tr>
<td>H(6B)</td>
<td>1458(7)</td>
<td>7285(6)</td>
<td>1341(5)</td>
<td>114</td>
</tr>
<tr>
<td>H(7A)</td>
<td>4468(9)</td>
<td>7112(6)</td>
<td>1207(5)</td>
<td>143</td>
</tr>
<tr>
<td>H(7B)</td>
<td>3587(9)</td>
<td>7647(6)</td>
<td>2168(5)</td>
<td>143</td>
</tr>
<tr>
<td>H(8A)</td>
<td>3566(5)</td>
<td>5442(6)</td>
<td>2865(3)</td>
<td>83</td>
</tr>
<tr>
<td>H(8B)</td>
<td>5171(5)</td>
<td>5536(6)</td>
<td>2434(3)</td>
<td>83</td>
</tr>
<tr>
<td>H(12A)</td>
<td>70(9)</td>
<td>3349(38)</td>
<td>1329(5)</td>
<td>96</td>
</tr>
<tr>
<td>H(12B)</td>
<td>985(27)</td>
<td>4270(18)</td>
<td>2253(17)</td>
<td>96</td>
</tr>
<tr>
<td>H(12C)</td>
<td>1333(20)</td>
<td>2534(20)</td>
<td>2089(20)</td>
<td>96</td>
</tr>
</tbody>
</table>
Experimental

R1 = (ABS(GS & GB & GBF & Vo & 0 & GB - & GBF & Vc & 0 & GB & GB) & GS & GBF & Vo & 0) & GB)
\[\text{wR}^2 = \frac{\text{GSw}(F & Vo & 0 & F & Vc & 0 & F & Vo & 0 & F & Vc & 0) & F & Vo & 0 & F & Vc & 0 & F & Vo & 0 & F & Vc & 0)}{\text{n - p}} \]

S = \[\frac{\text{GSw}(F & Vo & 0 & F & Vc & 0 & F & Vo & 0 & F & Vc & 0) & F & Vo & 0 & F & Vc & 0 & F & Vo & 0 & F & Vc & 0)}{(n - p)} \]

References:

The worst:

<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
<th>l</th>
<th>Fo^2</th>
<th>Fc^2</th>
<th>Delta(F^2)/esd</th>
<th>Fc/Fc(max)</th>
<th>Res(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-2</td>
<td>-2</td>
<td>5</td>
<td>40.49</td>
<td>58.29</td>
<td>3.61</td>
<td>0.072</td>
<td>2.00</td>
</tr>
<tr>
<td>4</td>
<td>-2</td>
<td>0</td>
<td>67.13</td>
<td>91.28</td>
<td>3.42</td>
<td>0.091</td>
<td>1.97</td>
</tr>
<tr>
<td>-6</td>
<td>-2</td>
<td>3</td>
<td>34.36</td>
<td>49.00</td>
<td>3.24</td>
<td>0.066</td>
<td>1.35</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>3</td>
<td>113.55</td>
<td>87.27</td>
<td>3.21</td>
<td>0.089</td>
<td>1.42</td>
</tr>
<tr>
<td>-6</td>
<td>0</td>
<td>12</td>
<td>16.43</td>
<td>8.53</td>
<td>3.14</td>
<td>0.028</td>
<td>0.88</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>6</td>
<td>28.92</td>
<td>42.14</td>
<td>3.13</td>
<td>0.062</td>
<td>1.03</td>
</tr>
<tr>
<td>-4</td>
<td>0</td>
<td>11</td>
<td>15.41</td>
<td>8.42</td>
<td>3.01</td>
<td>0.028</td>
<td>1.04</td>
</tr>
<tr>
<td>-3</td>
<td>0</td>
<td>6</td>
<td>316.69</td>
<td>258.04</td>
<td>2.93</td>
<td>0.152</td>
<td>1.77</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>2</td>
<td>50.09</td>
<td>37.71</td>
<td>2.90</td>
<td>0.058</td>
<td>2.14</td>
</tr>
<tr>
<td>9</td>
<td>-1</td>
<td>7</td>
<td>8.82</td>
<td>16.32</td>
<td>2.90</td>
<td>0.038</td>
<td>0.89</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>4</td>
<td>276.71</td>
<td>225.43</td>
<td>2.88</td>
<td>0.142</td>
<td>1.47</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>7</td>
<td>234.98</td>
<td>192.15</td>
<td>2.82</td>
<td>0.132</td>
<td>1.77</td>
</tr>
<tr>
<td>-4</td>
<td>-1</td>
<td>2</td>
<td>118.12</td>
<td>94.43</td>
<td>2.82</td>
<td>0.092</td>
<td>2.08</td>
</tr>
<tr>
<td>7</td>
<td>-1</td>
<td>10</td>
<td>7.51</td>
<td>2.75</td>
<td>2.82</td>
<td>0.016</td>
<td>0.92</td>
</tr>
<tr>
<td>7</td>
<td>-3</td>
<td>9</td>
<td>11.21</td>
<td>5.43</td>
<td>2.77</td>
<td>0.022</td>
<td>0.92</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>4</td>
<td>805.46</td>
<td>671.66</td>
<td>2.75</td>
<td>0.246</td>
<td>2.24</td>
</tr>
<tr>
<td>-2</td>
<td>-3</td>
<td>6</td>
<td>83.90</td>
<td>66.24</td>
<td>2.72</td>
<td>0.077</td>
<td>1.62</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>8</td>
<td>15.19</td>
<td>9.53</td>
<td>2.70</td>
<td>0.029</td>
<td>1.42</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>3</td>
<td>447.08</td>
<td>371.93</td>
<td>2.70</td>
<td>0.183</td>
<td>1.87</td>
</tr>
<tr>
<td>-6</td>
<td>-3</td>
<td>5</td>
<td>35.71</td>
<td>26.02</td>
<td>2.66</td>
<td>0.048</td>
<td>1.20</td>
</tr>
<tr>
<td>2</td>
<td>-5</td>
<td>5</td>
<td>27.94</td>
<td>19.77</td>
<td>2.66</td>
<td>0.042</td>
<td>1.34</td>
</tr>
<tr>
<td>3</td>
<td>-3</td>
<td>5</td>
<td>84.00</td>
<td>105.73</td>
<td>2.65</td>
<td>0.098</td>
<td>1.54</td>
</tr>
<tr>
<td>-6</td>
<td>0</td>
<td>5</td>
<td>14.12</td>
<td>8.75</td>
<td>2.64</td>
<td>0.028</td>
<td>1.32</td>
</tr>
<tr>
<td>7</td>
<td>-7</td>
<td>3</td>
<td>-0.81</td>
<td>3.07</td>
<td>2.61</td>
<td>0.017</td>
<td>0.86</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>6</td>
<td>78.83</td>
<td>62.92</td>
<td>2.60</td>
<td>0.075</td>
<td>1.97</td>
</tr>
<tr>
<td>8</td>
<td>-5</td>
<td>5</td>
<td>11.35</td>
<td>18.53</td>
<td>2.59</td>
<td>0.041</td>
<td>0.90</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>110.76</td>
<td>136.21</td>
<td>2.59</td>
<td>0.111</td>
<td>7.51</td>
</tr>
<tr>
<td>7</td>
<td>-7</td>
<td>1</td>
<td>1.15</td>
<td>5.57</td>
<td>2.58</td>
<td>0.022</td>
<td>0.89</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>6</td>
<td>187.63</td>
<td>155.03</td>
<td>2.57</td>
<td>0.118</td>
<td>1.81</td>
</tr>
<tr>
<td>7</td>
<td>-7</td>
<td>11</td>
<td>7.56</td>
<td>2.93</td>
<td>2.55</td>
<td>0.016</td>
<td>0.84</td>
</tr>
<tr>
<td>6</td>
<td>-7</td>
<td>3</td>
<td>1.33</td>
<td>5.49</td>
<td>2.54</td>
<td>0.022</td>
<td>0.92</td>
</tr>
<tr>
<td>6</td>
<td>-6</td>
<td>8</td>
<td>5.31</td>
<td>1.36</td>
<td>2.52</td>
<td>0.011</td>
<td>0.89</td>
</tr>
<tr>
<td>72X712</td>
<td>-5</td>
<td>-4</td>
<td>9</td>
<td>9.26</td>
<td>4.47</td>
<td>2.50</td>
<td>0.020</td>
</tr>
<tr>
<td>--------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
</tr>
<tr>
<td>72X701</td>
<td>-5</td>
<td>-1</td>
<td>8</td>
<td>128.68</td>
<td>105.14</td>
<td>2.50</td>
<td>0.097</td>
</tr>
<tr>
<td>72X591</td>
<td>9</td>
<td>-3</td>
<td>2</td>
<td>-0.74</td>
<td>2.48</td>
<td>2.44</td>
<td>0.015</td>
</tr>
<tr>
<td>72X481</td>
<td>-1</td>
<td>0</td>
<td>2</td>
<td>9427.82</td>
<td>11108.30</td>
<td>2.44</td>
<td>1.000</td>
</tr>
<tr>
<td>72X371</td>
<td>1</td>
<td>-4</td>
<td>7</td>
<td>33.68</td>
<td>25.34</td>
<td>2.39</td>
<td>0.048</td>
</tr>
<tr>
<td>72X261</td>
<td>3</td>
<td>-5</td>
<td>3</td>
<td>29.12</td>
<td>21.61</td>
<td>2.38</td>
<td>0.044</td>
</tr>
<tr>
<td>72X151</td>
<td>-2</td>
<td>-1</td>
<td>5</td>
<td>119.18</td>
<td>98.80</td>
<td>2.37</td>
<td>0.094</td>
</tr>
<tr>
<td>72X41</td>
<td>7</td>
<td>0</td>
<td>10</td>
<td>-2.32</td>
<td>0.58</td>
<td>2.36</td>
<td>0.007</td>
</tr>
<tr>
<td>72X-69</td>
<td>-5</td>
<td>-2</td>
<td>12</td>
<td>5.11</td>
<td>1.51</td>
<td>2.35</td>
<td>0.012</td>
</tr>
<tr>
<td>72X-179</td>
<td>1</td>
<td>-4</td>
<td>4</td>
<td>31.29</td>
<td>23.76</td>
<td>2.33</td>
<td>0.046</td>
</tr>
<tr>
<td>72X-289</td>
<td>2</td>
<td>-4</td>
<td>3</td>
<td>338.76</td>
<td>288.14</td>
<td>2.32</td>
<td>0.161</td>
</tr>
<tr>
<td>72X-399</td>
<td>2</td>
<td>-3</td>
<td>2</td>
<td>508.92</td>
<td>435.07</td>
<td>2.32</td>
<td>0.198</td>
</tr>
<tr>
<td>72X-509</td>
<td>7</td>
<td>-6</td>
<td>1</td>
<td>10.17</td>
<td>5.58</td>
<td>2.32</td>
<td>0.022</td>
</tr>
<tr>
<td>72X-619</td>
<td>2</td>
<td>-4</td>
<td>2</td>
<td>77.97</td>
<td>63.69</td>
<td>2.32</td>
<td>0.076</td>
</tr>
<tr>
<td>72X-729</td>
<td>0</td>
<td>-10</td>
<td>0</td>
<td>-2.25</td>
<td>0.51</td>
<td>2.30</td>
<td>0.007</td>
</tr>
<tr>
<td>72X-839</td>
<td>-2</td>
<td>0</td>
<td>6</td>
<td>729.05</td>
<td>625.98</td>
<td>2.29</td>
<td>0.237</td>
</tr>
<tr>
<td>72X-949</td>
<td>-6</td>
<td>-3</td>
<td>9</td>
<td>9.77</td>
<td>15.34</td>
<td>2.29</td>
<td>0.037</td>
</tr>
<tr>
<td>72X-1059</td>
<td>0</td>
<td>-1</td>
<td>5</td>
<td>364.20</td>
<td>311.60</td>
<td>2.27</td>
<td>0.167</td>
</tr>
</tbody>
</table>
Table 1. Crystal data and structure refinement for 28

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C15 H22 O5</td>
</tr>
<tr>
<td>Formula weight</td>
<td>282.33</td>
</tr>
<tr>
<td>Temperature</td>
<td>23 C</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Triclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P-1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 9.089(8)Å, alpha = 87.97(6)</td>
</tr>
<tr>
<td></td>
<td>b = 10.019(9)Å, beta = 79.22(6)</td>
</tr>
<tr>
<td></td>
<td>c = 16.778(12)Å, gamma = 74.72(7)</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.295 Mg/m^3</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.096 mm^-1</td>
</tr>
<tr>
<td>Volume, Z, F(000)</td>
<td>1448(2) Å^3, 4, 608</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.11 to 22.54 degrees</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-9 < h < 0, -10 < k <10, -18 < l < 17</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>4059, 3220 observed [I>2sigma(I)]</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3769 (Rint = 0.0171)</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F^2</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3767 / 0 / 362</td>
</tr>
<tr>
<td>Goodness-of-fit on F^2</td>
<td>1.030</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0412, wR2 = 0.1078</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.0491, wR2 = 0.1158</td>
</tr>
<tr>
<td>Extinction coefficient&9&1</td>
<td>0.0124(17)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.208 and -0.199 e/A^3</td>
</tr>
<tr>
<td>Scan speed, range, type 10 degrees/minute</td>
<td>0.6 degrees, Wyckoff</td>
</tr>
<tr>
<td>Background range, % time 0.6 degrees</td>
<td>25% each side</td>
</tr>
</tbody>
</table>

X-Ray data of compound 28
Table 2. Atomic coordinates [x 10^4] and equivalent isotropic displacement parameters [A^2 x 10^3] for 28. U(eq) is defined as one third of the trace of the orthogonalized U(ij) tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>6124(2)</td>
<td>6469(2)</td>
<td>5549(1)</td>
<td>54(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>4664(2)</td>
<td>7958(1)</td>
<td>6578(1)</td>
<td>46(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>334(2)</td>
<td>4967(3)</td>
<td>7891(1)</td>
<td>93(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>2544(2)</td>
<td>3425(2)</td>
<td>9117(1)</td>
<td>62(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>2037(2)</td>
<td>5725(2)</td>
<td>9220(1)</td>
<td>74(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>5545(3)</td>
<td>7782(2)</td>
<td>5207(1)</td>
<td>59(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>5155(3)</td>
<td>8762(2)</td>
<td>5901(1)</td>
<td>54(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>5898(2)</td>
<td>6565(2)</td>
<td>6415(1)</td>
<td>43(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>6975(2)</td>
<td>6302(2)</td>
<td>6839(1)</td>
<td>54(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>6470(3)</td>
<td>6350(3)</td>
<td>7757(1)</td>
<td>58(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>5483(3)</td>
<td>5346(2)</td>
<td>8041(1)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>4079(2)</td>
<td>5610(2)</td>
<td>7616(1)</td>
<td>37(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>4557(2)</td>
<td>5553(2)</td>
<td>6678(1)</td>
<td>38(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>5501(3)</td>
<td>4093(2)</td>
<td>6362(1)</td>
<td>51(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>3066(3)</td>
<td>5986(2)</td>
<td>6311(1)</td>
<td>48(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>1913(3)</td>
<td>5114(3)</td>
<td>6599(1)</td>
<td>56(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>1623(3)</td>
<td>4920(2)</td>
<td>7501(1)</td>
<td>53(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>3037(2)</td>
<td>4623(2)</td>
<td>7907(1)</td>
<td>41(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>2489(3)</td>
<td>4682(2)</td>
<td>8815(1)</td>
<td>49(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>1925(4)</td>
<td>3351(3)</td>
<td>9975(2)</td>
<td>90(1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1')</td>
<td>7631(2)</td>
<td>333(2)</td>
<td>9605(1)</td>
<td>55(1)</td>
</tr>
<tr>
<td>O(2')</td>
<td>7066(2)</td>
<td>2197(1)</td>
<td>8788(1)</td>
<td>51(1)</td>
</tr>
<tr>
<td>O(3')</td>
<td>12679(2)</td>
<td>1756(2)</td>
<td>6787(1)</td>
<td>59(1)</td>
</tr>
<tr>
<td>O(4')</td>
<td>9829(2)</td>
<td>2256(2)</td>
<td>5949(1)</td>
<td>64(1)</td>
</tr>
<tr>
<td>O(5')</td>
<td>11503(2)</td>
<td>326(2)</td>
<td>5371(1)</td>
<td>73(1)</td>
</tr>
<tr>
<td>C(1')</td>
<td>6862(4)</td>
<td>1494(3)</td>
<td>10108(2)</td>
<td>92(1)</td>
</tr>
<tr>
<td>C(2')</td>
<td>6517(4)</td>
<td>2664(3)</td>
<td>9590(2)</td>
<td>87(1)</td>
</tr>
<tr>
<td>C(3')</td>
<td>7603(2)</td>
<td>729(2)</td>
<td>8779(1)</td>
<td>42(1)</td>
</tr>
<tr>
<td>C(4')</td>
<td>6451(3)</td>
<td>129(2)</td>
<td>8455(1)</td>
<td>54(1)</td>
</tr>
<tr>
<td>C(5')</td>
<td>6408(3)</td>
<td>502(3)</td>
<td>7569(1)</td>
<td>59(1)</td>
</tr>
<tr>
<td>C(6')</td>
<td>8031(3)</td>
<td>136(3)</td>
<td>7035(1)</td>
<td>54(1)</td>
</tr>
<tr>
<td>C(7')</td>
<td>9150(2)</td>
<td>756(2)</td>
<td>7385(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(8')</td>
<td>9275(2)</td>
<td>284(2)</td>
<td>8266(1)</td>
<td>39(1)</td>
</tr>
<tr>
<td>C(9')</td>
<td>9908(3)</td>
<td>-1289(2)</td>
<td>8327(2)</td>
<td>57(1)</td>
</tr>
<tr>
<td>C(10')</td>
<td>10345(2)</td>
<td>1015(2)</td>
<td>8586(1)</td>
<td>48(1)</td>
</tr>
<tr>
<td>C(11')</td>
<td>11976(3)</td>
<td>735(3)</td>
<td>8058(1)</td>
<td>55(1)</td>
</tr>
<tr>
<td>C(12')</td>
<td>11893(2)</td>
<td>1068(2)</td>
<td>7189(1)</td>
<td>44(1)</td>
</tr>
<tr>
<td>C(13')</td>
<td>10780(2)</td>
<td>470(2)</td>
<td>6825(1)</td>
<td>42(1)</td>
</tr>
<tr>
<td>C(14')</td>
<td>10752(3)</td>
<td>979(3)</td>
<td>5966(1)</td>
<td>50(1)</td>
</tr>
<tr>
<td>C(15')</td>
<td>9757(4)</td>
<td>2851(4)</td>
<td>5154(2)</td>
<td>89(1)</td>
</tr>
</tbody>
</table>

Table 3. Bond lengths [Å] and angles [degrees] for 28

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length [Å]</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)-C(1)</td>
<td>1.426(3)</td>
</tr>
<tr>
<td>O(1)-C(3)</td>
<td>1.442(3)</td>
</tr>
<tr>
<td>O(2)-C(3)</td>
<td>1.433(3)</td>
</tr>
<tr>
<td>O(2)-C(2)</td>
<td>1.440(3)</td>
</tr>
<tr>
<td>O(3)-C(12)</td>
<td>1.220(3)</td>
</tr>
<tr>
<td>O(4)-C(14)</td>
<td>1.333(3)</td>
</tr>
<tr>
<td>O(4)-C(15)</td>
<td>1.451(3)</td>
</tr>
</tbody>
</table>
O(5) - C(14) 1.201 (3)
C(1) - C(2) 1.479 (3)
C(3) - C(4) 1.520 (3)
C(3) - C(8) 1.555 (3)
C(4) - C(5) 1.522 (3)
C(5) - C(6) 1.524 (3)
C(6) - C(7) 1.535 (3)
C(7) - C(8) 1.551 (3)
C(7) - C(13) 1.549 (3)
C(8) - C(10) 1.546 (3)
C(8) - C(9) 1.543 (3)
C(10) - C(11) 1.535 (3)
C(11) - C(12) 1.501 (3)
C(12) - C(13) 1.522 (3)
C(13) - C(14) 1.509 (3)
O(1') - C(1') 1.405 (3)
O(1') - C(3') 1.430 (3)
O(2') - C(2') 1.396 (3)
O(2') - C(3') 1.423 (3)
O(3') - C(12') 1.219 (3)
O(4') - C(14') 1.335 (3)
O(4') - C(15') 1.446 (3)
O(5') - C(14') 1.203 (3)
C(1') - C(2') 1.436 (4)
C(3') - C(4') 1.523 (3)
C(3') - C(8') 1.559 (3)
C(4') - C(5') 1.524 (3)
C(5') - C(6') 1.535 (3)
C(6') - C(7') 1.533 (3)
C(7') - C(8') 1.550 (3)
O(1) - C(3) 108.7 (2)
C(3) - O(2) - C(2) 106.3 (2)
C(14) - O(4) - C(15) 116.9 (2)
C(1) - C(1) - C(2) 104.0 (2)
C(2) - C(2) - C(1) 103.1 (2)
O(2) - C(3) - O(1) 105.7 (2)
O(2) - C(3) - C(4) 109.5 (2)
O(1) - C(3) - C(4) 109.4 (2)
O(2) - C(3) - C(8) 109.2 (2)
O(1) - C(3) - C(8) 109.8 (2)
C(4) - C(3) - C(8) 112.9 (2)
C(5) - C(4) - C(3) 111.4 (2)
C(4) - C(5) - C(6) 111.6 (2)
C(5) - C(6) - C(7) 111.3 (2)
C(6) - C(7) - C(8) 112.4 (2)
C(6) - C(7) - C(13) 112.4 (2)
C(8) - C(7) - C(13) 110.7 (2)
C(10) - C(8) - C(9) 109.4 (2)
C(10) - C(8) - C(7) 108.3 (2)
C(9) - C(8) - C(7) 112.0 (2)
C(10) - C(8) - C(3) 110.4 (2)

68
C(9)–C(8)–C(3) 107.9 (2)
C(7)–C(8)–C(3) 108.9 (2)
C(11)–C(10)–C(8) 113.9 (2)
C(12)–C(11)–C(10) 113.6 (2)
O(3)–C(12)–C(11) 122.4 (2)
O(3)–C(12)–C(13) 121.3 (2)
C(11)–C(12)–C(13) 116.3 (2)
C(14)–C(13)–C(12) 108.4 (2)
C(14)–C(13)–C(7) 112.7 (2)
C(12)–C(13)–C(7) 112.0 (2)
O(5)–C(14)–O(4) 123.6 (2)
O(5)–C(14)–C(13) 124.9 (2)
O(4)–C(14)–C(13) 111.6 (2)
C(1')–O(1')–C(3') 108.6 (2)
C(2')–O(2')–C(3') 108.9 (2)
C(14')–O(4')–C(15') 116.1 (2)
O(1')–C(1')–C(2') 107.3 (2)
O(2')–C(2')–C(1') 107.8 (2)
O(2')–C(3')–O(1') 106.2 (2)
O(2')–C(3')–C(4') 108.6 (2)
O(1')–C(3')–C(4') 109.7 (2)
O(2')–C(3')–C(8') 109.1 (2)
O(1')–C(3')–C(8') 109.9 (2)
C(4')–C(3')–C(8') 113.1 (2)
C(5')–C(4')–C(3') 111.5 (2)
C(4')–C(5')–C(6') 112.3 (2)
C(5')–C(6')–C(7') 111.2 (2)
C(6')–C(7')–C(8') 112.2 (2)
C(6')–C(7')–C(13') 112.1 (2)
C(8')–C(7')–C(13') 111.5 (2)
C(9')–C(8')–C(10') 109.4 (2)
C(9')–C(8')–C(7') 112.8 (2)
C(10')–C(8')–C(7') 108.8 (2)
C(9')–C(8')–C(3') 108.8 (2)
C(10')–C(8')–C(3') 110.3 (2)
C(7')–C(8')–C(3') 106.8 (2)
C(11')–C(10')–C(8') 113.2 (2)
C(12')–C(11')–C(10') 111.3 (2)
O(3')–C(12')–C(11') 122.5 (2)
O(3')–C(12')–C(13') 121.6 (2)
C(11')–C(12')–C(13') 115.9 (2)
C(14')–C(13')–C(12') 109.3 (2)
C(14')–C(13')–C(7') 114.4 (2)
C(12')–C(13')–C(7') 111.6 (2)
O(5')–C(14')–O(4') 124.0 (2)
O(5')–C(14')–C(13') 124.1 (2)
O(4')–C(14')–C(13') 111.9 (2)
Table 4. Anisotropic displacement parameters [Å² x 10³]

for TAOT4&N

The anisotropic displacement factor exponent takes the form:

\[-2(\pi)^2 \left[(ha*)^2U_{11} + \ldots + 2hka*b*U_{12} \right] \]

<table>
<thead>
<tr>
<th></th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>72(1)</td>
<td>44(1)</td>
<td>38(1)</td>
<td>1(1)</td>
<td>12(1)</td>
<td>-15(1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>60(1)</td>
<td>36(1)</td>
<td>38(1)</td>
<td>3(1)</td>
<td>3(1)</td>
<td>-13(1)</td>
</tr>
<tr>
<td>O(3)</td>
<td>51(1)</td>
<td>144(2)</td>
<td>83(1)</td>
<td>22(1)</td>
<td>-3(1)</td>
<td>-34(1)</td>
</tr>
<tr>
<td>O(4)</td>
<td>75(1)</td>
<td>54(1)</td>
<td>48(1)</td>
<td>18(1)</td>
<td>7(1)</td>
<td>-16(1)</td>
</tr>
<tr>
<td>O(5)</td>
<td>104(1)</td>
<td>60(1)</td>
<td>47(1)</td>
<td>-7(1)</td>
<td>16(1)</td>
<td>-25(1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>84(2)</td>
<td>52(1)</td>
<td>40(1)</td>
<td>7(1)</td>
<td>2(1)</td>
<td>-26(1)</td>
</tr>
<tr>
<td>C(2)</td>
<td>72(2)</td>
<td>45(1)</td>
<td>43(1)</td>
<td>8(1)</td>
<td>-1(1)</td>
<td>-20(1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>49(1)</td>
<td>40(1)</td>
<td>35(1)</td>
<td>0(1)</td>
<td>4(1)</td>
<td>-11(1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>46(1)</td>
<td>54(1)</td>
<td>63(2)</td>
<td>6(1)</td>
<td>-5(1)</td>
<td>-19(1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>57(1)</td>
<td>70(2)</td>
<td>58(2)</td>
<td>7(1)</td>
<td>-21(1)</td>
<td>-26(1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>52(1)</td>
<td>51(1)</td>
<td>44(1)</td>
<td>6(1)</td>
<td>-11(1)</td>
<td>-13(1)</td>
</tr>
<tr>
<td>C(7)</td>
<td>41(1)</td>
<td>32(1)</td>
<td>35(1)</td>
<td>2(1)</td>
<td>-2(1)</td>
<td>-7(1)</td>
</tr>
<tr>
<td>C(8)</td>
<td>45(1)</td>
<td>34(1)</td>
<td>34(1)</td>
<td>1(1)</td>
<td>-2(1)</td>
<td>-10(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>62(1)</td>
<td>41(1)</td>
<td>44(1)</td>
<td>-3(1)</td>
<td>4(1)</td>
<td>-13(1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>58(1)</td>
<td>50(1)</td>
<td>41(1)</td>
<td>9(1)</td>
<td>-14(1)</td>
<td>-19(1)</td>
</tr>
<tr>
<td>C(11)</td>
<td>57(1)</td>
<td>66(2)</td>
<td>55(1)</td>
<td>12(1)</td>
<td>-20(1)</td>
<td>-27(1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>51(1)</td>
<td>53(1)</td>
<td>58(2)</td>
<td>7(1)</td>
<td>-7(1)</td>
<td>-21(1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>46(1)</td>
<td>35(1)</td>
<td>39(1)</td>
<td>3(1)</td>
<td>-1(1)</td>
<td>-10(1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>52(1)</td>
<td>48(1)</td>
<td>43(1)</td>
<td>7(1)</td>
<td>1(1)</td>
<td>-15(1)</td>
</tr>
<tr>
<td>C(15)</td>
<td>102(2)</td>
<td>95(2)</td>
<td>56(2)</td>
<td>32(2)</td>
<td>14(2)</td>
<td>-22(2)</td>
</tr>
<tr>
<td>O(1')</td>
<td>62(1)</td>
<td>55(1)</td>
<td>40(1)</td>
<td>11(1)</td>
<td>-3(1)</td>
<td>-10(1)</td>
</tr>
<tr>
<td>O(2')</td>
<td>63(1)</td>
<td>40(1)</td>
<td>42(1)</td>
<td>1(1)</td>
<td>-4(1)</td>
<td>-3(1)</td>
</tr>
<tr>
<td>O(3')</td>
<td>63(1)</td>
<td>64(1)</td>
<td>55(1)</td>
<td>6(1)</td>
<td>-2(1)</td>
<td>-33(1)</td>
</tr>
<tr>
<td>O(4')</td>
<td>67(1)</td>
<td>74(1)</td>
<td>43(1)</td>
<td>19(1)</td>
<td>-4(1)</td>
<td>-9(1)</td>
</tr>
<tr>
<td>O(5')</td>
<td>74(1)</td>
<td>97(1)</td>
<td>41(1)</td>
<td>-12(1)</td>
<td>1(1)</td>
<td>-15(1)</td>
</tr>
<tr>
<td>C(1')</td>
<td>131(3)</td>
<td>78(2)</td>
<td>47(2)</td>
<td>0(2)</td>
<td>1(2)</td>
<td>-3(2)</td>
</tr>
<tr>
<td>C(2')</td>
<td>119(2)</td>
<td>74(2)</td>
<td>46(2)</td>
<td>-11(1)</td>
<td>-15(2)</td>
<td>14(2)</td>
</tr>
<tr>
<td>C(3')</td>
<td>48(1)</td>
<td>39(1)</td>
<td>36(1)</td>
<td>9(1)</td>
<td>-4(1)</td>
<td>-11(1)</td>
</tr>
<tr>
<td>C(4')</td>
<td>48(1)</td>
<td>60(2)</td>
<td>56(1)</td>
<td>3(1)</td>
<td>-1(1)</td>
<td>-22(1)</td>
</tr>
<tr>
<td>C(5')</td>
<td>48(1)</td>
<td>79(2)</td>
<td>58(2)</td>
<td>-2(1)</td>
<td>-11(1)</td>
<td>-27(1)</td>
</tr>
<tr>
<td>C(6')</td>
<td>55(1)</td>
<td>69(2)</td>
<td>45(1)</td>
<td>-3(1)</td>
<td>-9(1)</td>
<td>-27(1)</td>
</tr>
<tr>
<td>C(7')</td>
<td>40(1)</td>
<td>38(1)</td>
<td>39(1)</td>
<td>2(1)</td>
<td>-5(1)</td>
<td>-12(1)</td>
</tr>
<tr>
<td>C(8')</td>
<td>41(1)</td>
<td>36(1)</td>
<td>39(1)</td>
<td>6(1)</td>
<td>-6(1)</td>
<td>-12(1)</td>
</tr>
<tr>
<td>C(9')</td>
<td>58(1)</td>
<td>42(1)</td>
<td>63(2)</td>
<td>11(1)</td>
<td>-2(1)</td>
<td>-8(1)</td>
</tr>
<tr>
<td>C(10')</td>
<td>52(1)</td>
<td>56(1)</td>
<td>39(1)</td>
<td>6(1)</td>
<td>-11(1)</td>
<td>-19(1)</td>
</tr>
<tr>
<td>C(11')</td>
<td>50(1)</td>
<td>71(2)</td>
<td>50(1)</td>
<td>10(1)</td>
<td>-15(1)</td>
<td>-26(1)</td>
</tr>
<tr>
<td>C(12')</td>
<td>40(1)</td>
<td>44(1)</td>
<td>46(1)</td>
<td>1(1)</td>
<td>-3(1)</td>
<td>-10(1)</td>
</tr>
<tr>
<td>C(13')</td>
<td>44(1)</td>
<td>41(1)</td>
<td>39(1)</td>
<td>1(1)</td>
<td>-4(1)</td>
<td>-12(1)</td>
</tr>
<tr>
<td>C(14')</td>
<td>45(1)</td>
<td>66(2)</td>
<td>42(1)</td>
<td>3(1)</td>
<td>-5(1)</td>
<td>-20(1)</td>
</tr>
<tr>
<td>C(15')</td>
<td>84(2)</td>
<td>118(3)</td>
<td>53(2)</td>
<td>37(2)</td>
<td>-10(2)</td>
<td>-12(2)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates ($x \times 10^4$) and isotropic displacement parameters ($A^2 \times 10^3$) for TAOT4

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1A)</td>
<td>4633(3)</td>
<td>7800(2)</td>
<td>4981(1)</td>
<td>71</td>
</tr>
<tr>
<td>H(1B)</td>
<td>6328(3)</td>
<td>8002(2)</td>
<td>4784(1)</td>
<td>71</td>
</tr>
<tr>
<td>H(2A)</td>
<td>6053(3)</td>
<td>9062(2)</td>
<td>5974(1)</td>
<td>65</td>
</tr>
<tr>
<td>H(2B)</td>
<td>4326(3)</td>
<td>9567(2)</td>
<td>5827(1)</td>
<td>65</td>
</tr>
<tr>
<td>H(4A)</td>
<td>7669(3)</td>
<td>5402(2)</td>
<td>6673(1)</td>
<td>65</td>
</tr>
<tr>
<td>H(4B)</td>
<td>7539(3)</td>
<td>6995(2)</td>
<td>6677(1)</td>
<td>65</td>
</tr>
<tr>
<td>H(5A)</td>
<td>5878(3)</td>
<td>7282(3)</td>
<td>7929(1)</td>
<td>70</td>
</tr>
<tr>
<td>H(5B)</td>
<td>7381(3)</td>
<td>6118(3)</td>
<td>8009(1)</td>
<td>70</td>
</tr>
<tr>
<td>H(6A)</td>
<td>5125(3)</td>
<td>5448(2)</td>
<td>8623(1)</td>
<td>59</td>
</tr>
<tr>
<td>H(6B)</td>
<td>6112(3)</td>
<td>4405(2)</td>
<td>7927(1)</td>
<td>59</td>
</tr>
<tr>
<td>H(7A)</td>
<td>3449(2)</td>
<td>6552(2)</td>
<td>7765(1)</td>
<td>45</td>
</tr>
<tr>
<td>H(9A)</td>
<td>6428(3)</td>
<td>3822(2)</td>
<td>6590(1)</td>
<td>76</td>
</tr>
<tr>
<td>H(9B)</td>
<td>5775(3)</td>
<td>4101(2)</td>
<td>5781(1)</td>
<td>76</td>
</tr>
<tr>
<td>H(9C)</td>
<td>4888(3)</td>
<td>3447(2)</td>
<td>6518(1)</td>
<td>76</td>
</tr>
<tr>
<td>H(10A)</td>
<td>2554(3)</td>
<td>6949(2)</td>
<td>6451(1)</td>
<td>58</td>
</tr>
<tr>
<td>H(10B)</td>
<td>3353(3)</td>
<td>5913(2)</td>
<td>5724(1)</td>
<td>58</td>
</tr>
<tr>
<td>H(11A)</td>
<td>935(3)</td>
<td>5558(3)</td>
<td>6433(1)</td>
<td>68</td>
</tr>
<tr>
<td>H(11B)</td>
<td>2309(3)</td>
<td>4213(3)</td>
<td>6334(1)</td>
<td>68</td>
</tr>
<tr>
<td>H(13A)</td>
<td>3653(2)</td>
<td>3676(2)</td>
<td>7757(1)</td>
<td>50</td>
</tr>
<tr>
<td>H(15A)</td>
<td>2027(4)</td>
<td>2401(3)</td>
<td>10123(2)</td>
<td>134</td>
</tr>
<tr>
<td>H(15B)</td>
<td>848(4)</td>
<td>3850(3)</td>
<td>10084(2)</td>
<td>134</td>
</tr>
<tr>
<td>H(15C)</td>
<td>2489(4)</td>
<td>3755(3)</td>
<td>10286(2)</td>
<td>134</td>
</tr>
<tr>
<td>H(1'B)</td>
<td>7518(4)</td>
<td>1644(3)</td>
<td>10472(2)</td>
<td>110</td>
</tr>
<tr>
<td>H(2'A)</td>
<td>5912(4)</td>
<td>1356(3)</td>
<td>10431(2)</td>
<td>110</td>
</tr>
<tr>
<td>H(2'B)</td>
<td>5406(4)</td>
<td>3077(3)</td>
<td>9675(2)</td>
<td>104</td>
</tr>
<tr>
<td>H(2'B)</td>
<td>7018(4)</td>
<td>3357(3)</td>
<td>9710(2)</td>
<td>104</td>
</tr>
<tr>
<td>H(4'A)</td>
<td>6741(4)</td>
<td>-869(2)</td>
<td>8503(1)</td>
<td>65</td>
</tr>
<tr>
<td>H(4'B)</td>
<td>5425(3)</td>
<td>482(2)</td>
<td>8778(1)</td>
<td>65</td>
</tr>
<tr>
<td>H(5'A)</td>
<td>5941(3)</td>
<td>1486(3)</td>
<td>7535(1)</td>
<td>71</td>
</tr>
<tr>
<td>H(5'B)</td>
<td>5762(3)</td>
<td>13(3)</td>
<td>7365(1)</td>
<td>71</td>
</tr>
<tr>
<td>H(6'A)</td>
<td>7960(3)</td>
<td>484(3)</td>
<td>6493(1)</td>
<td>65</td>
</tr>
<tr>
<td>H(6'B)</td>
<td>8432(3)</td>
<td>-863(3)</td>
<td>6995(1)</td>
<td>65</td>
</tr>
<tr>
<td>H(7'A)</td>
<td>8713(2)</td>
<td>1762(2)</td>
<td>7409(1)</td>
<td>47</td>
</tr>
<tr>
<td>H(9'A)</td>
<td>9243(3)</td>
<td>-1747(2)</td>
<td>8127(2)</td>
<td>85</td>
</tr>
<tr>
<td>H(9'B)</td>
<td>9943(3)</td>
<td>-1529(2)</td>
<td>8883(2)</td>
<td>85</td>
</tr>
<tr>
<td>H(9'C)</td>
<td>10935(3)</td>
<td>-1575(2)</td>
<td>8008(2)</td>
<td>85</td>
</tr>
<tr>
<td>H(10'C)</td>
<td>9871(2)</td>
<td>2004(2)</td>
<td>8612(1)</td>
<td>57</td>
</tr>
<tr>
<td>H(10'D)</td>
<td>10441(2)</td>
<td>708(2)</td>
<td>9133(1)</td>
<td>57</td>
</tr>
<tr>
<td>H(11'C)</td>
<td>12560(3)</td>
<td>1292(3)</td>
<td>8257(1)</td>
<td>66</td>
</tr>
<tr>
<td>H(11'D)</td>
<td>12519(3)</td>
<td>-231(3)</td>
<td>8098(1)</td>
<td>66</td>
</tr>
<tr>
<td>H(13'B)</td>
<td>11210(3)</td>
<td>-536(2)</td>
<td>6791(1)</td>
<td>50</td>
</tr>
<tr>
<td>H(15'D)</td>
<td>9065(4)</td>
<td>3763(4)</td>
<td>5210(2)</td>
<td>133</td>
</tr>
<tr>
<td>H(15'E)</td>
<td>9385(4)</td>
<td>2281(4)</td>
<td>4834(2)</td>
<td>133</td>
</tr>
<tr>
<td>H(15'F)</td>
<td>10774(4)</td>
<td>2902(4)</td>
<td>4893(2)</td>
<td>133</td>
</tr>
</tbody>
</table>

-Experimental

\[
R1 = \frac{\sum \sqrt{\sum (F_{o} - F_{c})^2}}{\sum F_{c}}
\]

\[
wR2 = \frac{\sum \left[\sum (F_{o} - F_{c})^2 \right]}{\sum F_{c}^2}^{\frac{1}{2}}
\]

\[
S = \frac{\sum \left[\sum (F_{o} - F_{c})^2 \right]}{(n-p)}^{\frac{1}{2}}
\]
References:

The worst:

<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
<th>l</th>
<th>F_o^2</th>
<th>F_c^2</th>
<th>Delta(F^2/esd)</th>
<th>F_c/F_c(max)</th>
<th>Res(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>5</td>
<td>8</td>
<td>30.80</td>
<td>9.08</td>
<td>5.77</td>
<td>0.020</td>
<td>1.11</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>8</td>
<td>7.07</td>
<td>0.00</td>
<td>4.56</td>
<td>0.000</td>
<td>1.59</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>0</td>
<td>9.53</td>
<td>1.15</td>
<td>4.41</td>
<td>0.007</td>
<td>1.50</td>
</tr>
<tr>
<td>4</td>
<td>3</td>
<td>6</td>
<td>230.62</td>
<td>165.43</td>
<td>4.20</td>
<td>0.087</td>
<td>1.80</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>3</td>
<td>45.20</td>
<td>74.96</td>
<td>4.13</td>
<td>0.058</td>
<td>2.70</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>7</td>
<td>25.90</td>
<td>47.24</td>
<td>3.96</td>
<td>0.046</td>
<td>1.85</td>
</tr>
<tr>
<td>-2</td>
<td>-1</td>
<td>1</td>
<td>15.95</td>
<td>6.47</td>
<td>3.88</td>
<td>0.017</td>
<td>4.06</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>10</td>
<td>14.00</td>
<td>5.12</td>
<td>3.87</td>
<td>0.015</td>
<td>1.65</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>0</td>
<td>3.27</td>
<td>0.00</td>
<td>3.83</td>
<td>0.000</td>
<td>3.22</td>
</tr>
<tr>
<td>-7</td>
<td>0</td>
<td>5</td>
<td>55.21</td>
<td>33.10</td>
<td>3.77</td>
<td>0.039</td>
<td>1.09</td>
</tr>
<tr>
<td>*</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>-13.27</td>
<td>3.01</td>
<td>3.77</td>
<td>0.012</td>
</tr>
<tr>
<td>-1</td>
<td>0</td>
<td>11</td>
<td>18.09</td>
<td>7.37</td>
<td>3.71</td>
<td>0.018</td>
<td>1.43</td>
</tr>
<tr>
<td>*</td>
<td>-4</td>
<td>6</td>
<td>1</td>
<td>-5.55</td>
<td>0.12</td>
<td>3.45</td>
<td>0.002</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>4</td>
<td>4.88</td>
<td>0.28</td>
<td>3.41</td>
<td>0.004</td>
<td>1.82</td>
</tr>
<tr>
<td>-2</td>
<td>0</td>
<td>10</td>
<td>108.17</td>
<td>77.36</td>
<td>3.39</td>
<td>0.059</td>
<td>1.45</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>3</td>
<td>2.02</td>
<td>9.04</td>
<td>3.34</td>
<td>0.020</td>
<td>2.18</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>13</td>
<td>-4.39</td>
<td>0.71</td>
<td>3.31</td>
<td>0.006</td>
<td>0.99</td>
</tr>
<tr>
<td>-4</td>
<td>-3</td>
<td>2</td>
<td>115.15</td>
<td>84.10</td>
<td>3.30</td>
<td>0.062</td>
<td>1.92</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>2</td>
<td>35.48</td>
<td>21.57</td>
<td>3.26</td>
<td>0.031</td>
<td>2.35</td>
</tr>
<tr>
<td>0</td>
<td>-2</td>
<td>8</td>
<td>235.25</td>
<td>180.03</td>
<td>3.24</td>
<td>0.091</td>
<td>1.91</td>
</tr>
<tr>
<td>-2</td>
<td>2</td>
<td>6</td>
<td>11.52</td>
<td>4.49</td>
<td>3.17</td>
<td>0.014</td>
<td>1.86</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>1</td>
<td>3.27</td>
<td>10.78</td>
<td>3.17</td>
<td>0.022</td>
<td>1.74</td>
</tr>
<tr>
<td>0</td>
<td>-4</td>
<td>6</td>
<td>68.39</td>
<td>46.83</td>
<td>3.14</td>
<td>0.046</td>
<td>1.83</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>8</td>
<td>14.84</td>
<td>5.82</td>
<td>3.11</td>
<td>0.016</td>
<td>0.99</td>
</tr>
<tr>
<td>-2</td>
<td>-3</td>
<td>1</td>
<td>86.63</td>
<td>117.88</td>
<td>3.09</td>
<td>0.073</td>
<td>2.88</td>
</tr>
<tr>
<td>-2</td>
<td>-3</td>
<td>6</td>
<td>199.97</td>
<td>155.54</td>
<td>3.09</td>
<td>0.084</td>
<td>1.91</td>
</tr>
<tr>
<td>1</td>
<td>-4</td>
<td>2</td>
<td>57.77</td>
<td>39.63</td>
<td>3.07</td>
<td>0.043</td>
<td>2.14</td>
</tr>
<tr>
<td>2</td>
<td>-9</td>
<td>1</td>
<td>-2.29</td>
<td>3.72</td>
<td>3.06</td>
<td>0.013</td>
<td>0.98</td>
</tr>
<tr>
<td>-4</td>
<td>1</td>
<td>2</td>
<td>46.28</td>
<td>30.60</td>
<td>3.05</td>
<td>0.037</td>
<td>1.87</td>
</tr>
<tr>
<td>0</td>
<td>-5</td>
<td>4</td>
<td>116.05</td>
<td>87.83</td>
<td>2.98</td>
<td>0.063</td>
<td>1.76</td>
</tr>
<tr>
<td>-1</td>
<td>-3</td>
<td>7</td>
<td>85.93</td>
<td>62.83</td>
<td>2.98</td>
<td>0.054</td>
<td>1.87</td>
</tr>
<tr>
<td>-1</td>
<td>4</td>
<td>5</td>
<td>168.26</td>
<td>130.82</td>
<td>2.95</td>
<td>0.077</td>
<td>1.77</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>16</td>
<td>14.44</td>
<td>6.75</td>
<td>2.92</td>
<td>0.018</td>
<td>1.03</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>10</td>
<td>29.68</td>
<td>17.37</td>
<td>2.86</td>
<td>0.028</td>
<td>0.99</td>
</tr>
<tr>
<td>-2</td>
<td>-2</td>
<td>6</td>
<td>87.35</td>
<td>64.98</td>
<td>2.84</td>
<td>0.054</td>
<td>2.07</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>3</td>
<td>-0.26</td>
<td>4.10</td>
<td>2.84</td>
<td>0.014</td>
<td>1.73</td>
</tr>
<tr>
<td>-2</td>
<td>-2</td>
<td>7</td>
<td>519.27</td>
<td>427.99</td>
<td>2.82</td>
<td>0.140</td>
<td>1.87</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>3</td>
<td>20.17</td>
<td>32.18</td>
<td>2.81</td>
<td>0.038</td>
<td>4.75</td>
</tr>
<tr>
<td>-3</td>
<td>0</td>
<td>6</td>
<td>4.17</td>
<td>0.51</td>
<td>2.81</td>
<td>0.005</td>
<td>1.82</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>6</td>
<td>24.14</td>
<td>37.49</td>
<td>2.79</td>
<td>0.041</td>
<td>2.16</td>
</tr>
<tr>
<td>5</td>
<td>-1</td>
<td>7</td>
<td>10.79</td>
<td>4.41</td>
<td>2.76</td>
<td>0.014</td>
<td>1.46</td>
</tr>
<tr>
<td>-3</td>
<td>-2</td>
<td>5</td>
<td>135.98</td>
<td>106.11</td>
<td>2.75</td>
<td>0.070</td>
<td>1.98</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>2</td>
<td>207.04</td>
<td>258.06</td>
<td>2.74</td>
<td>0.109</td>
<td>4.20</td>
</tr>
<tr>
<td>0</td>
<td>3</td>
<td>4</td>
<td>105.53</td>
<td>136.39</td>
<td>2.73</td>
<td>0.079</td>
<td>2.52</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>7</td>
<td>43.83</td>
<td>29.77</td>
<td>2.73</td>
<td>0.037</td>
<td>1.37</td>
</tr>
<tr>
<td>2</td>
<td>-6</td>
<td>1</td>
<td>-2.73</td>
<td>0.25</td>
<td>2.72</td>
<td>0.003</td>
<td>1.40</td>
</tr>
<tr>
<td>5</td>
<td>-4</td>
<td>4</td>
<td>19.62</td>
<td>10.50</td>
<td>2.70</td>
<td>0.022</td>
<td>1.25</td>
</tr>
<tr>
<td>0</td>
<td>-1</td>
<td>15</td>
<td>98.88</td>
<td>75.48</td>
<td>2.70</td>
<td>0.059</td>
<td>1.09</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>1</td>
<td>13.08</td>
<td>5.75</td>
<td>2.70</td>
<td>0.016</td>
<td>1.29</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>3</td>
<td>874.81</td>
<td>1048.87</td>
<td>2.69</td>
<td>0.219</td>
<td>3.78</td>
</tr>
</tbody>
</table>
Table 1. Crystal data and structure refinement for 29

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C15 H22 O5</td>
</tr>
<tr>
<td>Formula weight</td>
<td>282.33</td>
</tr>
<tr>
<td>Temperature</td>
<td>-86 C</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 A</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Orthorhombic</td>
</tr>
<tr>
<td>Space group</td>
<td>Pbcn</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 13.33(2)Å, alpha = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 10.92(2)Å, beta = 90°</td>
</tr>
<tr>
<td></td>
<td>c = 19.57(5)Å, gamma = 90°</td>
</tr>
<tr>
<td>Crystal size</td>
<td>2.50 x 1.00 x 0.40 mm</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.317 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.098 mm⁻¹</td>
</tr>
<tr>
<td>Volume, Z, F(000)</td>
<td>2849(10) Å³, 8, 1216</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.58 to 22.49 degrees</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-1 < h < 14, 0 < k <11, -21 < l < 0</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>1903, 1104 observed [I>2sigma(I)]</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>1748 (Rint = 0.0943)</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>1738 / 0 / 181</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.155</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.1054, wR2 = 0.2333</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.1661, wR2 = 0.2881</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.274 and -0.235 e/Å³</td>
</tr>
<tr>
<td>Scan speed, range, type</td>
<td>10 degrees/minute, 1.2 degrees, Wyckoff</td>
</tr>
<tr>
<td>Background range, % time</td>
<td>1.5 degrees, 25% each side</td>
</tr>
</tbody>
</table>

X-Ray data of compound 29
Table 2. Atomic coordinates \([x \times 10^4] \) and equivalent isotropic displacement parameters \([A^2 \times 10^3] \) for 29. \(U(eq)\) is defined as one third of the trace of the orthogonalized \(U(ij)\) tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>(U(eq))</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>7360(4)</td>
<td>6752(5)</td>
<td>3647(2)</td>
<td>50(2)</td>
</tr>
<tr>
<td>O(2)</td>
<td>9139(4)</td>
<td>6315(5)</td>
<td>1272(2)</td>
<td>49(2)</td>
</tr>
<tr>
<td>O(3)</td>
<td>8390(5)</td>
<td>6415(6)</td>
<td>4885(2)</td>
<td>68(2)</td>
</tr>
<tr>
<td>O(4)</td>
<td>7793(4)</td>
<td>5014(5)</td>
<td>1200(2)</td>
<td>57(2)</td>
</tr>
<tr>
<td>O(5)</td>
<td>9994(5)</td>
<td>4966(6)</td>
<td>4174(2)</td>
<td>68(2)</td>
</tr>
<tr>
<td>C(1)</td>
<td>7596(9)</td>
<td>5975(10)</td>
<td>760(4)</td>
<td>76(3)</td>
</tr>
<tr>
<td>C(2)</td>
<td>8403(8)</td>
<td>6882(8)</td>
<td>865(4)</td>
<td>68(3)</td>
</tr>
<tr>
<td>C(3)</td>
<td>8844(5)</td>
<td>5055(7)</td>
<td>1385(3)</td>
<td>41(2)</td>
</tr>
<tr>
<td>C(4)</td>
<td>9431(6)</td>
<td>4211(8)</td>
<td>914(4)</td>
<td>53(2)</td>
</tr>
<tr>
<td>C(5)</td>
<td>10543(7)</td>
<td>4240(9)</td>
<td>1061(4)</td>
<td>60(2)</td>
</tr>
<tr>
<td>C(6)</td>
<td>10757(7)</td>
<td>3981(8)</td>
<td>1812(4)</td>
<td>59(2)</td>
</tr>
<tr>
<td>C(7)</td>
<td>10145(6)</td>
<td>4781(7)</td>
<td>2292(3)</td>
<td>46(2)</td>
</tr>
<tr>
<td>C(8)</td>
<td>8992(5)</td>
<td>4730(6)</td>
<td>2153(3)</td>
<td>36(2)</td>
</tr>
<tr>
<td>C(9)</td>
<td>8572(6)</td>
<td>3432(7)</td>
<td>2285(3)</td>
<td>49(2)</td>
</tr>
<tr>
<td>C(10)</td>
<td>8460(6)</td>
<td>5670(7)</td>
<td>2601(3)</td>
<td>43(2)</td>
</tr>
<tr>
<td>C(11)</td>
<td>8085(6)</td>
<td>5607(7)</td>
<td>3346(3)</td>
<td>41(2)</td>
</tr>
<tr>
<td>C(12)</td>
<td>9677(6)</td>
<td>5076(8)</td>
<td>3524(4)</td>
<td>47(2)</td>
</tr>
<tr>
<td>C(13)</td>
<td>10365(6)</td>
<td>4477(8)</td>
<td>3037(4)</td>
<td>55(2)</td>
</tr>
<tr>
<td>C(14)</td>
<td>8177(6)</td>
<td>6161(7)</td>
<td>3868(4)</td>
<td>46(2)</td>
</tr>
<tr>
<td>C(15)</td>
<td>6772(7)</td>
<td>7387(8)</td>
<td>4145(4)</td>
<td>63(2)</td>
</tr>
</tbody>
</table>

Table 3. Bond lengths [Å] and angles [degrees] for 29.

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)–C(14)</td>
<td>1.338(9)</td>
</tr>
<tr>
<td>O(1)–C(15)</td>
<td>1.430(9)</td>
</tr>
<tr>
<td>O(2)–C(2)</td>
<td>1.408(10)</td>
</tr>
<tr>
<td>O(2)–C(3)</td>
<td>1.449(9)</td>
</tr>
<tr>
<td>O(3)–C(14)</td>
<td>1.241(9)</td>
</tr>
<tr>
<td>O(4)–C(3)</td>
<td>1.430(9)</td>
</tr>
<tr>
<td>O(4)–C(1)</td>
<td>1.433(10)</td>
</tr>
<tr>
<td>O(5)–C(12)</td>
<td>1.346(9)</td>
</tr>
<tr>
<td>C(1)–C(2)</td>
<td>1.477(13)</td>
</tr>
<tr>
<td>C(3)–C(4)</td>
<td>1.519(11)</td>
</tr>
<tr>
<td>C(3)–C(8)</td>
<td>1.558(10)</td>
</tr>
<tr>
<td>C(4)–C(5)</td>
<td>1.511(12)</td>
</tr>
<tr>
<td>C(5)–C(6)</td>
<td>1.523(11)</td>
</tr>
<tr>
<td>C(6)–C(7)</td>
<td>1.521(11)</td>
</tr>
<tr>
<td>C(7)–C(13)</td>
<td>1.523(11)</td>
</tr>
<tr>
<td>C(7)–C(8)</td>
<td>1.561(11)</td>
</tr>
<tr>
<td>C(8)–C(10)</td>
<td>1.524(10)</td>
</tr>
<tr>
<td>C(8)–C(9)</td>
<td>1.546(10)</td>
</tr>
<tr>
<td>C(10)–C(11)</td>
<td>1.532(10)</td>
</tr>
<tr>
<td>C(11)–C(12)</td>
<td>1.345(11)</td>
</tr>
<tr>
<td>C(11)–C(14)</td>
<td>1.453(11)</td>
</tr>
<tr>
<td>C(12)–C(13)</td>
<td>1.475(11)</td>
</tr>
<tr>
<td>C(14)–O(1)–C(15)</td>
<td>117.3(6)</td>
</tr>
<tr>
<td>C(2)–O(2)–C(3)</td>
<td>108.3(6)</td>
</tr>
<tr>
<td>C(3)–O(4)–C(1)</td>
<td>106.7(6)</td>
</tr>
<tr>
<td>O(4)–C(1)–C(2)</td>
<td>105.5(7)</td>
</tr>
<tr>
<td>O(2)–C(2)–C(1)</td>
<td>107.0(7)</td>
</tr>
<tr>
<td>O(4)–C(3)–O(2)</td>
<td>105.4(6)</td>
</tr>
</tbody>
</table>
Table 4. Anisotropic displacement parameters [Å² x 10³]
for 29. The anisotropic displacement factor exponent takes the form:

\[-2(\pi)^2 [(ha*)^2U_{11} + \ldots + 2hka*b*U_{12}]\]

<table>
<thead>
<tr>
<th></th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(1)</td>
<td>60(3)</td>
<td>62(3)</td>
<td>29(2)</td>
<td>-4(2)</td>
<td>5(2)</td>
<td>16(3)</td>
</tr>
<tr>
<td>O(2)</td>
<td>58(3)</td>
<td>47(3)</td>
<td>41(3)</td>
<td>15(2)</td>
<td>9(2)</td>
<td>-8(3)</td>
</tr>
<tr>
<td>O(3)</td>
<td>90(5)</td>
<td>91(4)</td>
<td>24(3)</td>
<td>3(3)</td>
<td>-9(3)</td>
<td>15(4)</td>
</tr>
<tr>
<td>O(4)</td>
<td>54(4)</td>
<td>82(4)</td>
<td>33(3)</td>
<td>8(3)</td>
<td>7(2)</td>
<td>-2(3)</td>
</tr>
<tr>
<td>O(5)</td>
<td>78(4)</td>
<td>93(4)</td>
<td>31(3)</td>
<td>-1(3)</td>
<td>-20(3)</td>
<td>18(4)</td>
</tr>
<tr>
<td>C(1)</td>
<td>83(7)</td>
<td>93(7)</td>
<td>52(5)</td>
<td>17(5)</td>
<td>-21(5)</td>
<td>7(6)</td>
</tr>
<tr>
<td>C(2)</td>
<td>91(7)</td>
<td>64(6)</td>
<td>48(5)</td>
<td>10(4)</td>
<td>-3(5)</td>
<td>15(6)</td>
</tr>
<tr>
<td>C(3)</td>
<td>43(4)</td>
<td>53(5)</td>
<td>25(3)</td>
<td>1(3)</td>
<td>-4(3)</td>
<td>-5(4)</td>
</tr>
<tr>
<td>C(4)</td>
<td>64(6)</td>
<td>63(5)</td>
<td>31(4)</td>
<td>2(4)</td>
<td>1(4)</td>
<td>-4(4)</td>
</tr>
<tr>
<td>C(5)</td>
<td>62(6)</td>
<td>76(6)</td>
<td>41(4)</td>
<td>6(4)</td>
<td>5(4)</td>
<td>8(5)</td>
</tr>
<tr>
<td>C(6)</td>
<td>59(5)</td>
<td>72(6)</td>
<td>47(4)</td>
<td>6(4)</td>
<td>2(4)</td>
<td>20(5)</td>
</tr>
<tr>
<td>C(7)</td>
<td>50(5)</td>
<td>56(5)</td>
<td>32(4)</td>
<td>7(3)</td>
<td>3(4)</td>
<td>3(4)</td>
</tr>
<tr>
<td>C(8)</td>
<td>46(4)</td>
<td>36(4)</td>
<td>25(3)</td>
<td>0(3)</td>
<td>-4(3)</td>
<td>1(3)</td>
</tr>
<tr>
<td>C(9)</td>
<td>67(5)</td>
<td>48(4)</td>
<td>32(4)</td>
<td>3(4)</td>
<td>0(4)</td>
<td>-10(4)</td>
</tr>
<tr>
<td>C(10)</td>
<td>56(5)</td>
<td>50(4)</td>
<td>24(4)</td>
<td>-1(3)</td>
<td>-9(3)</td>
<td>11(4)</td>
</tr>
<tr>
<td>C(11)</td>
<td>51(5)</td>
<td>45(4)</td>
<td>27(4)</td>
<td>0(3)</td>
<td>-7(3)</td>
<td>4(4)</td>
</tr>
<tr>
<td>C(12)</td>
<td>57(5)</td>
<td>55(5)</td>
<td>30(4)</td>
<td>0(4)</td>
<td>-10(4)</td>
<td>-4(4)</td>
</tr>
<tr>
<td>C(13)</td>
<td>57(5)</td>
<td>64(5)</td>
<td>43(4)</td>
<td>1(4)</td>
<td>-16(4)</td>
<td>10(4)</td>
</tr>
<tr>
<td>C(14)</td>
<td>56(5)</td>
<td>47(5)</td>
<td>33(4)</td>
<td>0(3)</td>
<td>-5(4)</td>
<td>1(4)</td>
</tr>
<tr>
<td>C(15)</td>
<td>75(6)</td>
<td>69(6)</td>
<td>44(4)</td>
<td>-6(4)</td>
<td>9(4)</td>
<td>18(5)</td>
</tr>
</tbody>
</table>
Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å^2 x 10^3) for 29.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(5A)</td>
<td>9577(5)</td>
<td>5269(6)</td>
<td>4432(2)</td>
<td>101</td>
</tr>
<tr>
<td>H(1A)</td>
<td>6944(9)</td>
<td>6340(10)</td>
<td>846(4)</td>
<td>91</td>
</tr>
<tr>
<td>H(1B)</td>
<td>7608(9)</td>
<td>5663(10)</td>
<td>296(4)</td>
<td>91</td>
</tr>
<tr>
<td>H(2A)</td>
<td>8686(8)</td>
<td>7128(8)</td>
<td>429(4)</td>
<td>81</td>
</tr>
<tr>
<td>H(2B)</td>
<td>8142(8)</td>
<td>7604(8)</td>
<td>1093(4)</td>
<td>81</td>
</tr>
<tr>
<td>H(4A)</td>
<td>9186(6)</td>
<td>3380(8)</td>
<td>968(4)</td>
<td>64</td>
</tr>
<tr>
<td>H(4B)</td>
<td>9317(6)</td>
<td>4455(8)</td>
<td>444(4)</td>
<td>64</td>
</tr>
<tr>
<td>H(5A)</td>
<td>10810(7)</td>
<td>5038(9)</td>
<td>941(4)</td>
<td>72</td>
</tr>
<tr>
<td>H(5B)</td>
<td>10879(7)</td>
<td>3632(9)</td>
<td>781(4)</td>
<td>72</td>
</tr>
<tr>
<td>H(6A)</td>
<td>10610(7)</td>
<td>3128(8)</td>
<td>1907(4)</td>
<td>71</td>
</tr>
<tr>
<td>H(6B)</td>
<td>11464(7)</td>
<td>4114(8)</td>
<td>1900(4)</td>
<td>71</td>
</tr>
<tr>
<td>H(7A)</td>
<td>10358(6)</td>
<td>5630(7)</td>
<td>2217(3)</td>
<td>55</td>
</tr>
<tr>
<td>H(9A)</td>
<td>8915(6)</td>
<td>2853(7)</td>
<td>1999(3)</td>
<td>73</td>
</tr>
<tr>
<td>H(9B)</td>
<td>7868(6)</td>
<td>3418(7)</td>
<td>2182(3)</td>
<td>73</td>
</tr>
<tr>
<td>H(9C)</td>
<td>8671(6)</td>
<td>3217(7)</td>
<td>2756(3)</td>
<td>73</td>
</tr>
<tr>
<td>H(10A)</td>
<td>7742(6)</td>
<td>5530(7)</td>
<td>2580(3)</td>
<td>52</td>
</tr>
<tr>
<td>H(10B)</td>
<td>8590(6)</td>
<td>6485(7)</td>
<td>2423(3)</td>
<td>52</td>
</tr>
<tr>
<td>H(13A)</td>
<td>10322(6)</td>
<td>3597(8)</td>
<td>3098(4)</td>
<td>66</td>
</tr>
<tr>
<td>H(13B)</td>
<td>11047(6)</td>
<td>4724(8)</td>
<td>3141(4)</td>
<td>66</td>
</tr>
<tr>
<td>H(15A)</td>
<td>6211(7)</td>
<td>7771(8)</td>
<td>3925(4)</td>
<td>94</td>
</tr>
<tr>
<td>H(15B)</td>
<td>7177(7)</td>
<td>8000(8)</td>
<td>4363(4)</td>
<td>94</td>
</tr>
<tr>
<td>H(15C)</td>
<td>6534(7)</td>
<td>6816(8)</td>
<td>4481(4)</td>
<td>94</td>
</tr>
</tbody>
</table>

-Experimental
R1=(&GS&GB&GBF&Vo&0&GB-&GBF&Vc&0&GB&/&GS&GBF&Vo&0&GB),
& wR2=&GSw(F&Vo&0&^2&0-F&Vc&0&^2&0)&^2&0/&GSw[(F&Vo&0&^2&0)&^2&0]/& Gh&0,
& S=[&GSw(F&Vo&0&^2&0-F&Vc&0&^2&0)&^2&0]/(n-p)&^&Gh&0

References:
The worst:

<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
<th>l</th>
<th>Fo^2</th>
<th>Fc^2</th>
<th>Delta(F^2)/esd</th>
<th>Fc/Fc(max)</th>
<th>Res(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>8</td>
<td>3</td>
<td>718.95</td>
<td>0.08</td>
<td>8.39</td>
<td>0.004</td>
<td>1.09</td>
</tr>
<tr>
<td>*</td>
<td>6</td>
<td>4</td>
<td>-168.88</td>
<td>32.77</td>
<td>5.88</td>
<td>0.078</td>
<td>1.70</td>
</tr>
<tr>
<td>*</td>
<td>6</td>
<td>3</td>
<td>-113.89</td>
<td>2.55</td>
<td>5.61</td>
<td>0.022</td>
<td>1.77</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>1</td>
<td>461.95</td>
<td>66.73</td>
<td>5.04</td>
<td>0.112</td>
<td>1.23</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>5</td>
<td>367.78</td>
<td>49.06</td>
<td>4.93</td>
<td>0.096</td>
<td>1.16</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>5</td>
<td>493.67</td>
<td>115.03</td>
<td>4.90</td>
<td>0.147</td>
<td>1.25</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>4</td>
<td>431.92</td>
<td>65.88</td>
<td>4.87</td>
<td>0.111</td>
<td>1.21</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>1</td>
<td>1790.77</td>
<td>1048.74</td>
<td>4.74</td>
<td>0.444</td>
<td>4.89</td>
</tr>
<tr>
<td>10</td>
<td>5</td>
<td>1</td>
<td>510.72</td>
<td>115.09</td>
<td>4.73</td>
<td>0.147</td>
<td>1.14</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>5</td>
<td>430.32</td>
<td>108.18</td>
<td>4.35</td>
<td>0.142</td>
<td>1.05</td>
</tr>
<tr>
<td>10</td>
<td>4</td>
<td>1</td>
<td>249.72</td>
<td>7.65</td>
<td>4.27</td>
<td>0.038</td>
<td>1.20</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>2</td>
<td>291.56</td>
<td>53.00</td>
<td>4.26</td>
<td>0.100</td>
<td>1.50</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>3</td>
<td>-74.09</td>
<td>160.48</td>
<td>4.26</td>
<td>0.174</td>
<td>1.64</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>6</td>
<td>299.11</td>
<td>31.73</td>
<td>4.26</td>
<td>0.077</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>1</td>
<td>628.96</td>
<td>257.74</td>
<td>4.12</td>
<td>0.220</td>
<td>1.36</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>2</td>
<td>-101.27</td>
<td>121.79</td>
<td>4.11</td>
<td>0.151</td>
<td>1.50</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*</td>
<td>-113.36</td>
<td>5.41</td>
<td>3.99</td>
<td>0.032</td>
<td>1.37</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>6</td>
<td>169.23</td>
<td>0.48</td>
<td>3.90</td>
<td>0.010</td>
<td>1.13</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>3</td>
<td>550.17</td>
<td>200.70</td>
<td>3.90</td>
<td>0.194</td>
<td>1.46</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*</td>
<td>-94.88</td>
<td>62.51</td>
<td>3.80</td>
<td>0.108</td>
<td>1.25</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>6</td>
<td>-74.80</td>
<td>2.36</td>
<td>3.73</td>
<td>0.021</td>
<td>1.60</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>4</td>
<td>673.12</td>
<td>327.14</td>
<td>3.58</td>
<td>0.248</td>
<td>1.41</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>5</td>
<td>241.19</td>
<td>42.11</td>
<td>3.55</td>
<td>0.089</td>
<td>0.94</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>6</td>
<td>152.80</td>
<td>3.41</td>
<td>3.48</td>
<td>0.025</td>
<td>0.97</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>0</td>
<td>-5.95</td>
<td>217.47</td>
<td>3.48</td>
<td>0.202</td>
<td>1.52</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>1</td>
<td>-19.01</td>
<td>212.70</td>
<td>3.41</td>
<td>0.200</td>
<td>1.42</td>
</tr>
<tr>
<td>1</td>
<td>3</td>
<td>1</td>
<td>6112.58</td>
<td>5024.23</td>
<td>3.41</td>
<td>0.971</td>
<td>3.46</td>
</tr>
<tr>
<td>0</td>
<td>10</td>
<td>4</td>
<td>1028.28</td>
<td>598.96</td>
<td>3.36</td>
<td>0.335</td>
<td>1.07</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>4</td>
<td>169.68</td>
<td>15.88</td>
<td>3.35</td>
<td>0.055</td>
<td>1.08</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>8</td>
<td>79.42</td>
<td>310.13</td>
<td>3.24</td>
<td>0.241</td>
<td>1.19</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>4</td>
<td>155.91</td>
<td>10.01</td>
<td>3.23</td>
<td>0.043</td>
<td>1.05</td>
</tr>
<tr>
<td>4</td>
<td>6</td>
<td>1</td>
<td>-74.53</td>
<td>56.26</td>
<td>3.18</td>
<td>0.103</td>
<td>1.59</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>7</td>
<td>-62.10</td>
<td>7.64</td>
<td>3.18</td>
<td>0.038</td>
<td>1.38</td>
</tr>
<tr>
<td>9</td>
<td>7</td>
<td>4</td>
<td>146.85</td>
<td>1.77</td>
<td>3.12</td>
<td>0.018</td>
<td>1.05</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>1</td>
<td>-64.41</td>
<td>19.04</td>
<td>3.11</td>
<td>0.060</td>
<td>1.41</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>2</td>
<td>-79.15</td>
<td>10.19</td>
<td>3.10</td>
<td>0.044</td>
<td>1.29</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>4</td>
<td>572.91</td>
<td>967.27</td>
<td>3.06</td>
<td>0.426</td>
<td>1.65</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>3</td>
<td>321.77</td>
<td>107.22</td>
<td>3.05</td>
<td>0.142</td>
<td>1.30</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>5</td>
<td>174.65</td>
<td>421.75</td>
<td>2.96</td>
<td>0.281</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>11</td>
<td>1</td>
<td>-79.51</td>
<td>1.68</td>
<td>2.93</td>
<td>0.018</td>
<td>1.20</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>3</td>
<td>13</td>
<td>-76.31</td>
<td>0.73</td>
<td>2.91</td>
<td>0.012</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>5</td>
<td>457.33</td>
<td>221.04</td>
<td>2.88</td>
<td>0.204</td>
<td>1.21</td>
</tr>
<tr>
<td>4</td>
<td>9</td>
<td>7</td>
<td>143.74</td>
<td>20.33</td>
<td>2.82</td>
<td>0.062</td>
<td>1.06</td>
</tr>
<tr>
<td>9</td>
<td>5</td>
<td>4</td>
<td>590.94</td>
<td>315.29</td>
<td>2.81</td>
<td>0.243</td>
<td>1.19</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>7</td>
<td>141.61</td>
<td>20.73</td>
<td>2.77</td>
<td>0.062</td>
<td>1.13</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>2</td>
<td>368.23</td>
<td>165.66</td>
<td>2.70</td>
<td>0.176</td>
<td>1.15</td>
</tr>
<tr>
<td>10</td>
<td>8</td>
<td>1</td>
<td>137.43</td>
<td>6.25</td>
<td>2.68</td>
<td>0.034</td>
<td>0.95</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>3</td>
<td>112.73</td>
<td>6.11</td>
<td>2.66</td>
<td>0.034</td>
<td>1.00</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>3</td>
<td>-60.23</td>
<td>1.12</td>
<td>2.65</td>
<td>0.014</td>
<td>1.76</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>4</td>
<td>-44.86</td>
<td>25.13</td>
<td>2.65</td>
<td>0.069</td>
<td>1.52</td>
</tr>
</tbody>
</table>
X-Ray data of compound 41

Table 1. Crystal data and structure refinement for 41

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{27} H_{34} BrO_{4}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>502.45</td>
</tr>
<tr>
<td>Temperature</td>
<td>23 °C</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2_1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 11.00(2) Å alpha = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 19.19(2) Å beta = 109.82(9)°</td>
</tr>
<tr>
<td></td>
<td>c = 12.459(13) Å gamma = 90°</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.50 x 0.50 x 0.15 mm</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.349 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.691 mm⁻¹</td>
</tr>
<tr>
<td>Volume, Z, F(000)</td>
<td>2474(5) Å³, 4, 1052</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.74 to 22.50°</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>0 ≤ h ≤ 11, 0 ≤ k ≤ 20, -13 ≤ l ≤ 12</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>3502, 1796 observed [I > 2σ(I)]</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>3318 (R_{int} = 0.1414)</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from psi-scans</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.9479 and 0.7019</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>3318 / 1 / 257</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.034</td>
</tr>
<tr>
<td>Final R indices [I > 2σ(I)]</td>
<td>R1 = 0.1129, WR2 = 0.2667</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.1942, WR2 = 0.3406</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>-0.08(4)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.738 and -1.052 eÅ⁻³</td>
</tr>
<tr>
<td>Scan speed, range, type</td>
<td>10°/minute, 0.7°, Wyckoff</td>
</tr>
<tr>
<td>Background range, % time</td>
<td>1.0°, 25% each side</td>
</tr>
</tbody>
</table>

Table 2. Atomic coordinates [x10^4] and equivalent isotropic displacement
parameters \([A^2 \times 10^3]\) for \(41\). U(eq) is defined as one third of the trace of the orthogonalized \(U_{ij}\) tensor.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)</td>
<td>8405(13)</td>
<td>2734(6)</td>
<td>816(8)</td>
<td>74(9)</td>
</tr>
<tr>
<td>C(2)</td>
<td>8509(14)</td>
<td>3436(7)</td>
<td>1125(10)</td>
<td>53(6)</td>
</tr>
<tr>
<td>C(3)</td>
<td>8062(14)</td>
<td>3949(5)</td>
<td>289(13)</td>
<td>58(7)</td>
</tr>
<tr>
<td>C(4)</td>
<td>7512(15)</td>
<td>3759(6)</td>
<td>-855(11)</td>
<td>49(6)</td>
</tr>
<tr>
<td>C(5)</td>
<td>7408(12)</td>
<td>3057(6)</td>
<td>-1164(8)</td>
<td>58(7)</td>
</tr>
<tr>
<td>C(6)</td>
<td>7855(9)</td>
<td>2545(5)</td>
<td>-328(9)</td>
<td>47(6)</td>
</tr>
<tr>
<td>C(7)</td>
<td>7787(15)</td>
<td>1807(5)</td>
<td>-654(13)</td>
<td>35(5)</td>
</tr>
<tr>
<td>O(1)</td>
<td>7574(16)</td>
<td>1615(9)</td>
<td>-1648(14)</td>
<td>68(5)</td>
</tr>
<tr>
<td>O(2)</td>
<td>8029(15)</td>
<td>1378(9)</td>
<td>171(13)</td>
<td>57(4)</td>
</tr>
<tr>
<td>O(3)</td>
<td>8620(25)</td>
<td>2925(12)</td>
<td>-1086(23)</td>
<td>122(9)</td>
</tr>
<tr>
<td>C(8)</td>
<td>7014(17)</td>
<td>-3555(10)</td>
<td>-1053(15)</td>
<td>71(5)</td>
</tr>
<tr>
<td>Br(1)</td>
<td>8205(3)</td>
<td>4885(1)</td>
<td>676(3)</td>
<td>83(1)</td>
</tr>
<tr>
<td>C(9)</td>
<td>8056(27)</td>
<td>632(13)</td>
<td>-75(22)</td>
<td>64(7)</td>
</tr>
<tr>
<td>C(10)</td>
<td>7978(23)</td>
<td>256(13)</td>
<td>936(19)</td>
<td>48(6)</td>
</tr>
<tr>
<td>C(11)</td>
<td>9131(27)</td>
<td>475(16)</td>
<td>2022(23)</td>
<td>79(8)</td>
</tr>
<tr>
<td>C(12)</td>
<td>6785(24)</td>
<td>503(15)</td>
<td>1267(22)</td>
<td>67(7)</td>
</tr>
<tr>
<td>C(13)</td>
<td>5619(32)</td>
<td>329(18)</td>
<td>293(28)</td>
<td>97(10)</td>
</tr>
<tr>
<td>C(14)</td>
<td>5581(25)</td>
<td>-427(13)</td>
<td>-155(21)</td>
<td>58(7)</td>
</tr>
<tr>
<td>C(15)</td>
<td>6614(23)</td>
<td>-821(13)</td>
<td>186(20)</td>
<td>55(6)</td>
</tr>
<tr>
<td>C(16)</td>
<td>7983(22)</td>
<td>-513(12)</td>
<td>858(20)</td>
<td>43(6)</td>
</tr>
<tr>
<td>C(17)</td>
<td>8907(20)</td>
<td>-826(11)</td>
<td>292(17)</td>
<td>39(5)</td>
</tr>
<tr>
<td>C(18)</td>
<td>9013(26)</td>
<td>-1614(15)</td>
<td>370(24)</td>
<td>72(8)</td>
</tr>
<tr>
<td>C(19)</td>
<td>7825(19)</td>
<td>-1976(11)</td>
<td>511(18)</td>
<td>37(5)</td>
</tr>
<tr>
<td>C(20)</td>
<td>6543(22)</td>
<td>-1576(13)</td>
<td>-165(19)</td>
<td>51(6)</td>
</tr>
<tr>
<td>C(21)</td>
<td>6270(26)</td>
<td>-1626(15)</td>
<td>-1451(21)</td>
<td>75(8)</td>
</tr>
<tr>
<td>C(22)</td>
<td>5405(25)</td>
<td>-1914(14)</td>
<td>129(24)</td>
<td>69(7)</td>
</tr>
<tr>
<td>C(23)</td>
<td>5349(23)</td>
<td>-2740(14)</td>
<td>-38(22)</td>
<td>69(7)</td>
</tr>
<tr>
<td>C(24)</td>
<td>6644(24)</td>
<td>-3062(16)</td>
<td>734(23)</td>
<td>72(8)</td>
</tr>
<tr>
<td>C(25)</td>
<td>7181(22)</td>
<td>-2806(13)</td>
<td>419(19)</td>
<td>51(6)</td>
</tr>
<tr>
<td>C(26)</td>
<td>8980(25)</td>
<td>-3051(16)</td>
<td>1302(23)</td>
<td>74(8)</td>
</tr>
<tr>
<td>C(27)</td>
<td>8787(23)</td>
<td>-3080(13)</td>
<td>-650(20)</td>
<td>47(6)</td>
</tr>
<tr>
<td>C(1')</td>
<td>7019(14)</td>
<td>3324(7)</td>
<td>4237(10)</td>
<td>75(9)</td>
</tr>
<tr>
<td>C(2')</td>
<td>6872(16)</td>
<td>2627(8)</td>
<td>3895(10)</td>
<td>80(9)</td>
</tr>
<tr>
<td>C(3')</td>
<td>7284(16)</td>
<td>2098(6)</td>
<td>4706(14)</td>
<td>62(7)</td>
</tr>
<tr>
<td>C(4')</td>
<td>7844(15)</td>
<td>2265(6)</td>
<td>5859(13)</td>
<td>51(6)</td>
</tr>
<tr>
<td>C(5')</td>
<td>7992(13)</td>
<td>2961(7)</td>
<td>6201(9)</td>
<td>72(8)</td>
</tr>
<tr>
<td>C(6')</td>
<td>7579(11)</td>
<td>3491(6)</td>
<td>5391(11)</td>
<td>49(6)</td>
</tr>
<tr>
<td>C(7')</td>
<td>7773(19)</td>
<td>4223(6)</td>
<td>5745(17)</td>
<td>73(8)</td>
</tr>
<tr>
<td>O(1')</td>
<td>8054(19)</td>
<td>4397(11)</td>
<td>6737(17)</td>
<td>85(6)</td>
</tr>
<tr>
<td>O(2')</td>
<td>7517(17)</td>
<td>4655(9)</td>
<td>4905(15)</td>
<td>69(5)</td>
</tr>
<tr>
<td>O(3')</td>
<td>8879(31)</td>
<td>8804(13)</td>
<td>6739(24)</td>
<td>165(14)</td>
</tr>
<tr>
<td>O(4')</td>
<td>7655(19)</td>
<td>9646(10)</td>
<td>5912(17)</td>
<td>79(6)</td>
</tr>
<tr>
<td>Br(2)</td>
<td>7085(4)</td>
<td>1170(1)</td>
<td>4275(3)</td>
<td>103(1)</td>
</tr>
<tr>
<td>C(8')</td>
<td>7776(30)</td>
<td>5400(15)</td>
<td>5187(25)</td>
<td>78(8)</td>
</tr>
<tr>
<td>C(9')</td>
<td>7786(28)</td>
<td>5743(16)</td>
<td>4082(24)</td>
<td>74(8)</td>
</tr>
<tr>
<td>C(10')</td>
<td>8943(29)</td>
<td>5517(17)</td>
<td>3808(26)</td>
<td>92(10)</td>
</tr>
<tr>
<td>C(11')</td>
<td>6569(31)</td>
<td>5576(20)</td>
<td>3156(29)</td>
<td>103(11)</td>
</tr>
<tr>
<td>C(12')</td>
<td>5407(34)</td>
<td>5792(19)</td>
<td>3318(31)</td>
<td>108(12)</td>
</tr>
<tr>
<td>C(13')</td>
<td>5492(31)</td>
<td>6514(17)</td>
<td>3927(26)</td>
<td>88(9)</td>
</tr>
<tr>
<td>C(14')</td>
<td>6641(24)</td>
<td>6877(14)</td>
<td>4277(20)</td>
<td>59(7)</td>
</tr>
<tr>
<td>C(15')</td>
<td>7783(29)</td>
<td>6565(17)</td>
<td>4337(27)</td>
<td>85(9)</td>
</tr>
<tr>
<td>C(16')</td>
<td>8908(29)</td>
<td>6792(16)</td>
<td>5391(25)</td>
<td>85(9)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for 41

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Distance [Å]</th>
<th>Angle [°]</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1')-C(6')</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>C(1')-C(6)</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>C(1')-C(2')</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>C(3)-Br(1)</td>
<td>1.854(10)</td>
<td></td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>C(6)-C(7)</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>C(7)-O(1)</td>
<td>1.24(2)</td>
<td></td>
</tr>
<tr>
<td>C(7)-O(2)</td>
<td>1.27(2)</td>
<td></td>
</tr>
<tr>
<td>O(2)-C(8)</td>
<td>1.47(3)</td>
<td></td>
</tr>
<tr>
<td>O(3)-C(26)</td>
<td>1.17(3)</td>
<td></td>
</tr>
<tr>
<td>O(4)-C(26)</td>
<td>1.29(3)</td>
<td></td>
</tr>
<tr>
<td>O(4)-C(27)</td>
<td>1.46(4)</td>
<td></td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.48(3)</td>
<td></td>
</tr>
<tr>
<td>C(9)-C(15)</td>
<td>1.48(3)</td>
<td></td>
</tr>
<tr>
<td>C(9)-C(10)</td>
<td>1.57(3)</td>
<td></td>
</tr>
<tr>
<td>C(9)-C(11)</td>
<td>1.58(4)</td>
<td></td>
</tr>
<tr>
<td>C(11)-C(12)</td>
<td>1.47(4)</td>
<td></td>
</tr>
<tr>
<td>C(12)-C(13)</td>
<td>1.55(4)</td>
<td></td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.31(3)</td>
<td></td>
</tr>
<tr>
<td>C(14)-C(19)</td>
<td>1.51(3)</td>
<td></td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.57(3)</td>
<td></td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.54(3)</td>
<td></td>
</tr>
<tr>
<td>C(16)-C(17)</td>
<td>1.52(3)</td>
<td></td>
</tr>
<tr>
<td>C(17)-C(18)</td>
<td>1.54(3)</td>
<td></td>
</tr>
<tr>
<td>C(18)-C(19)</td>
<td>1.58(3)</td>
<td></td>
</tr>
<tr>
<td>C(18)-C(24)</td>
<td>1.60(3)</td>
<td></td>
</tr>
<tr>
<td>C(19)-C(20)</td>
<td>1.53(3)</td>
<td></td>
</tr>
<tr>
<td>C(19)-C(21)</td>
<td>1.56(3)</td>
<td></td>
</tr>
<tr>
<td>C(21)-C(22)</td>
<td>1.60(4)</td>
<td></td>
</tr>
<tr>
<td>C(22)-C(23)</td>
<td>1.55(3)</td>
<td></td>
</tr>
<tr>
<td>C(23)-C(24)</td>
<td>1.55(4)</td>
<td></td>
</tr>
<tr>
<td>C(24)-C(25)</td>
<td>1.45(3)</td>
<td></td>
</tr>
<tr>
<td>C(24)-C(26)</td>
<td>1.45(3)</td>
<td></td>
</tr>
<tr>
<td>C(1')-C(2')</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>C(1')-C(6')</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>C(2')-C(3')</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>C(3')-C(4')</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>C(3')-Br(2)</td>
<td>1.853(12)</td>
<td></td>
</tr>
<tr>
<td>Bond</td>
<td>Distance (Å)</td>
<td></td>
</tr>
<tr>
<td>----------------------</td>
<td>--------------</td>
<td></td>
</tr>
<tr>
<td>C(4')-C(5')</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>C(5')-C(6')</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>C(6')-C(7')</td>
<td>1.47</td>
<td></td>
</tr>
<tr>
<td>C(7')-O(1')</td>
<td>1.21(2)</td>
<td></td>
</tr>
<tr>
<td>C(7')-O(2')</td>
<td>1.29(2)</td>
<td></td>
</tr>
<tr>
<td>O(2')-C(8')</td>
<td>1.48(3)</td>
<td></td>
</tr>
<tr>
<td>O(3')-C(26')</td>
<td>1.21(3)</td>
<td></td>
</tr>
<tr>
<td>O(4')-C(26')</td>
<td>1.26(4)</td>
<td></td>
</tr>
<tr>
<td>O(4')-C(27')</td>
<td>1.44(3)</td>
<td></td>
</tr>
<tr>
<td>C(8')-C(9')</td>
<td>1.53(4)</td>
<td></td>
</tr>
<tr>
<td>C(9')-C(11')</td>
<td>1.48(4)</td>
<td></td>
</tr>
<tr>
<td>C(9')-C(10')</td>
<td>1.49(4)</td>
<td></td>
</tr>
<tr>
<td>C(9')-C(15')</td>
<td>1.61(4)</td>
<td></td>
</tr>
<tr>
<td>C(11')-C(12')</td>
<td>1.42(4)</td>
<td></td>
</tr>
<tr>
<td>C(12')-C(13')</td>
<td>1.57(5)</td>
<td></td>
</tr>
<tr>
<td>C(13')-C(14')</td>
<td>1.38(4)</td>
<td></td>
</tr>
<tr>
<td>C(14')-C(15')</td>
<td>1.37(4)</td>
<td></td>
</tr>
<tr>
<td>C(14')-C(19')</td>
<td>1.58(4)</td>
<td></td>
</tr>
<tr>
<td>C(15')-C(16')</td>
<td>1.53(4)</td>
<td></td>
</tr>
<tr>
<td>C(16')-C(17')</td>
<td>1.59(4)</td>
<td></td>
</tr>
<tr>
<td>C(17')-C(18')</td>
<td>1.44(4)</td>
<td></td>
</tr>
<tr>
<td>C(18')-C(19')</td>
<td>1.53(3)</td>
<td></td>
</tr>
<tr>
<td>C(18')-C(24')</td>
<td>1.62(4)</td>
<td></td>
</tr>
<tr>
<td>C(19')-C(20')</td>
<td>1.52(4)</td>
<td></td>
</tr>
<tr>
<td>C(19')-C(21')</td>
<td>1.53(4)</td>
<td></td>
</tr>
<tr>
<td>C(21')-C(22')</td>
<td>1.59(5)</td>
<td></td>
</tr>
<tr>
<td>C(22')-C(23')</td>
<td>1.55(4)</td>
<td></td>
</tr>
<tr>
<td>C(23')-C(24')</td>
<td>1.45(4)</td>
<td></td>
</tr>
<tr>
<td>C(24')-C(26')</td>
<td>1.52(4)</td>
<td></td>
</tr>
<tr>
<td>C(24')-C(25')</td>
<td>1.55(4)</td>
<td></td>
</tr>
<tr>
<td>C(6)-C(1)-C(2)</td>
<td>120.0</td>
<td></td>
</tr>
<tr>
<td>C(3)-C(2)-C(1)</td>
<td>120.0</td>
<td></td>
</tr>
<tr>
<td>C(4)-C(3)-C(2)</td>
<td>120.0</td>
<td></td>
</tr>
<tr>
<td>C(4)-C(3)-Br(1)</td>
<td>119.2(8)</td>
<td></td>
</tr>
<tr>
<td>C(2)-C(3)-Br(1)</td>
<td>120.8(8)</td>
<td></td>
</tr>
<tr>
<td>C(3)-C(4)-C(5)</td>
<td>120.0</td>
<td></td>
</tr>
<tr>
<td>C(6)-C(5)-C(4)</td>
<td>120.0</td>
<td></td>
</tr>
<tr>
<td>C(5)-C(6)-C(1)</td>
<td>120.0</td>
<td></td>
</tr>
<tr>
<td>C(5)-C(6)-C(7)</td>
<td>120.1</td>
<td></td>
</tr>
<tr>
<td>C(1)-C(6)-C(7)</td>
<td>119.9</td>
<td></td>
</tr>
<tr>
<td>O(1)-C(7)-O(2)</td>
<td>122.2(14)</td>
<td></td>
</tr>
<tr>
<td>O(1)-C(7)-C(6)</td>
<td>122.7(12)</td>
<td></td>
</tr>
<tr>
<td>O(2)-C(7)-C(6)</td>
<td>115.0(10)</td>
<td></td>
</tr>
<tr>
<td>C(7)-O(2)-C(8)</td>
<td>118(2)</td>
<td></td>
</tr>
<tr>
<td>C(26)-O(4)-C(27)</td>
<td>115(2)</td>
<td></td>
</tr>
<tr>
<td>O(2)-C(8)-C(9)</td>
<td>107(2)</td>
<td></td>
</tr>
<tr>
<td>C(8)-C(9)-C(15)</td>
<td>115(2)</td>
<td></td>
</tr>
<tr>
<td>C(8)-C(9)-C(10)</td>
<td>110(2)</td>
<td></td>
</tr>
<tr>
<td>C(15)-C(9)-C(10)</td>
<td>108(2)</td>
<td></td>
</tr>
<tr>
<td>C(8)-C(9)-C(11)</td>
<td>112(2)</td>
<td></td>
</tr>
<tr>
<td>C(15)-C(9)-C(11)</td>
<td>110(2)</td>
<td></td>
</tr>
<tr>
<td>C(10)-C(9)-C(11)</td>
<td>101(2)</td>
<td></td>
</tr>
<tr>
<td>C(12)-C(11)-C(9)</td>
<td>107(2)</td>
<td></td>
</tr>
<tr>
<td>C(11)-C(12)-C(13)</td>
<td>115(3)</td>
<td></td>
</tr>
<tr>
<td>C(14)-C(13)-C(12)</td>
<td>121(3)</td>
<td></td>
</tr>
<tr>
<td>C(13)-C(14)-C(19)</td>
<td>120(2)</td>
<td></td>
</tr>
<tr>
<td>C(13)-C(14)-C(15)</td>
<td>122(2)</td>
<td></td>
</tr>
<tr>
<td>C(19)-C(14)-C(15)</td>
<td>118(2)</td>
<td></td>
</tr>
</tbody>
</table>
C(9)–C(15)–C(16) 116(2)
C(9)–C(15)–C(14) 113(2)
C(16)–C(15)–C(14) 106(2)
C(17)–C(16)–C(15) 114(2)
C(16)–C(17)–C(18) 114(2)
C(17)–C(18)–C(19) 111(2)
C(17)–C(18)–C(24) 115(2)
C(19)–C(18)–C(24) 118(2)
C(14)–C(19)–C(20) 110(2)
C(14)–C(19)–C(21) 107(2)
C(20)–C(19)–C(21) 109(2)
C(14)–C(19)–C(18) 111(2)
C(20)–C(19)–C(18) 111(2)
C(21)–C(19)–C(18) 108(2)
C(19)–C(21)–C(22) 112(2)
C(23)–C(22)–C(21) 109(2)
C(24)–C(23)–C(22) 113(2)
C(25)–C(24)–C(26) 106(2)
C(25)–C(24)–C(23) 108(2)
C(26)–C(24)–C(23) 115(2)
C(25)–C(24)–C(18) 107(2)
C(26)–C(24)–C(18) 115(2)
C(23)–C(24)–C(18) 106(2)
O(3)–C(26)–O(4) 123(3)
O(3)–C(26)–C(24) 126(2)
O(4)–C(26)–C(24) 111(2)
C(2')–C(1')–C(6') 120.0
C(1')–C(2')–C(3') 120.0
C(4')–C(3')–C(2') 120.0
C(4')–C(3')–Br(2) 119.2(9)
C(2')–C(3')–Br(2) 120.8(9)
C(3')–C(4')–C(5') 120.0
C(4')–C(5')–C(6') 120.0
C(5')–C(6')–C(1') 120.0
C(5')–C(6')–C(7') 120.1
C(1')–C(6')–C(7') 119.9
O(1')–C(7')–O(2') 124(2)
O(1')–C(7')–C(6') 122.0(14)
O(2')–C(7')–C(6') 113.7(11)
C(7')–O(2')–C(8') 117(2)
C(26')–O(4')–C(27') 118(3)
O(2')–C(8')–C(9') 105(2)
C(11')–C(9')–C(10') 112(3)
C(11')–C(9')–C(8') 109(3)
C(10')–C(9')–C(8') 111(3)
C(11')–C(9')–C(15') 108(3)
C(10')–C(9')–C(15') 113(3)
C(8')–C(9')–C(15') 104(3)
C(12')–C(11')–C(9') 117(3)
C(11')–C(12')–C(13') 115(3)
C(14')–C(13')–C(12') 120(3)
C(15')–C(14')–C(13') 121(3)
C(15')–C(14')–C(19') 120(3)
C(13')–C(14')–C(19') 119(3)
C(14')–C(15')–C(16') 112(3)
C(14')–C(15')–C(9') 119(3)
C(16')–C(15')–C(9') 113(3)
C(15')–C(16')–C(17') 109(3)
Table 4. Anisotropic displacement parameters [Å$^2 \times 10^3$] for 41&N. The factor exponent takes the form: $-2\pi^2[(ha^*)^2U_{11}+...+2hka^*b^*U_{12}]$

<table>
<thead>
<tr>
<th></th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>O(3)</td>
<td>151(20)</td>
<td>80(16)</td>
<td>179(23)</td>
<td>-42(16)</td>
<td>115(19)</td>
<td>-29(15)</td>
</tr>
<tr>
<td>O(4)</td>
<td>80(12)</td>
<td>51(13)</td>
<td>82(12)</td>
<td>-28(10)</td>
<td>29(10)</td>
<td>-17(9)</td>
</tr>
<tr>
<td>Br(1)</td>
<td>85(2)</td>
<td>32(2)</td>
<td>132(3)</td>
<td>-13(2)</td>
<td>37(2)</td>
<td>0(2)</td>
</tr>
<tr>
<td>O(3')</td>
<td>193(28)</td>
<td>78(17)</td>
<td>143(23)</td>
<td>-35(16)</td>
<td>-49(21)</td>
<td>40(18)</td>
</tr>
<tr>
<td>O(4')</td>
<td>99(15)</td>
<td>47(13)</td>
<td>96(15)</td>
<td>7(10)</td>
<td>39(12)</td>
<td>21(10)</td>
</tr>
<tr>
<td>Br(2)</td>
<td>132(3)</td>
<td>39(2)</td>
<td>134(3)</td>
<td>-19(2)</td>
<td>39(2)</td>
<td>1(2)</td>
</tr>
</tbody>
</table>

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å$^2 \times 10^3$) for 41

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>8713(19)</td>
<td>2382(7)</td>
<td>1391(10)</td>
<td>88</td>
</tr>
<tr>
<td>H(2)</td>
<td>8887(20)</td>
<td>3567(9)</td>
<td>1912(10)</td>
<td>64</td>
</tr>
<tr>
<td>H(4)</td>
<td>7204(21)</td>
<td>4112(7)</td>
<td>-1431(14)</td>
<td>58</td>
</tr>
<tr>
<td>H(5)</td>
<td>7030(17)</td>
<td>2927(8)</td>
<td>-1952(8)</td>
<td>69</td>
</tr>
<tr>
<td>H(8C)</td>
<td>8850(27)</td>
<td>514(13)</td>
<td>-209(22)</td>
<td>77</td>
</tr>
<tr>
<td>H(8D)</td>
<td>7331(27)</td>
<td>510(13)</td>
<td>-747(22)</td>
<td>77</td>
</tr>
<tr>
<td>H(10D)</td>
<td>9074(27)</td>
<td>229(16)</td>
<td>2675(23)</td>
<td>119</td>
</tr>
<tr>
<td>H(10E)</td>
<td>9093(27)</td>
<td>968(16)</td>
<td>2142(23)</td>
<td>119</td>
</tr>
<tr>
<td>H(10F)</td>
<td>9933(27)</td>
<td>363(16)</td>
<td>1916(23)</td>
<td>119</td>
</tr>
<tr>
<td>H(11C)</td>
<td>6773(24)</td>
<td>265(15)</td>
<td>1950(22)</td>
<td>80</td>
</tr>
<tr>
<td>H(11D)</td>
<td>6829(24)</td>
<td>1001(15)</td>
<td>1409(22)</td>
<td>80</td>
</tr>
<tr>
<td>H(12C)</td>
<td>5557(32)</td>
<td>649(18)</td>
<td>-327(28)</td>
<td>116</td>
</tr>
<tr>
<td>H(12D)</td>
<td>4866(32)</td>
<td>403(18)</td>
<td>518(28)</td>
<td>116</td>
</tr>
<tr>
<td>H(13B)</td>
<td>4818(25)</td>
<td>-602(13)</td>
<td>-670(21)</td>
<td>69</td>
</tr>
<tr>
<td>H(15B)</td>
<td>8242(22)</td>
<td>-696(12)</td>
<td>1638(20)</td>
<td>51</td>
</tr>
<tr>
<td>Atom</td>
<td>Ux</td>
<td>Uy</td>
<td>Uz</td>
<td>U12</td>
</tr>
<tr>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>H(16C)</td>
<td>9359</td>
<td>-556</td>
<td>-66</td>
<td>46</td>
</tr>
<tr>
<td>H(17B)</td>
<td>9772</td>
<td>-1736</td>
<td>1013</td>
<td>87</td>
</tr>
<tr>
<td>H(17C)</td>
<td>9138</td>
<td>-1790</td>
<td>-315</td>
<td>87</td>
</tr>
<tr>
<td>H(18B)</td>
<td>7925</td>
<td>-1892</td>
<td>1312</td>
<td>44</td>
</tr>
<tr>
<td>H(20D)</td>
<td>6224</td>
<td>-2107</td>
<td>-1672</td>
<td>112</td>
</tr>
<tr>
<td>H(20E)</td>
<td>6952</td>
<td>-1400</td>
<td>-1637</td>
<td>112</td>
</tr>
<tr>
<td>H(20F)</td>
<td>5463</td>
<td>-1401</td>
<td>-1850</td>
<td>112</td>
</tr>
<tr>
<td>H(21C)</td>
<td>4597</td>
<td>-1712</td>
<td>-355</td>
<td>83</td>
</tr>
<tr>
<td>H(21D)</td>
<td>5502</td>
<td>-1807</td>
<td>915</td>
<td>83</td>
</tr>
<tr>
<td>H(22C)</td>
<td>4639</td>
<td>-2930</td>
<td>164</td>
<td>83</td>
</tr>
<tr>
<td>H(22D)</td>
<td>5206</td>
<td>-2852</td>
<td>-830</td>
<td>83</td>
</tr>
<tr>
<td>H(23C)</td>
<td>6779</td>
<td>-2942</td>
<td>1523</td>
<td>86</td>
</tr>
<tr>
<td>H(23D)</td>
<td>6589</td>
<td>-3565</td>
<td>668</td>
<td>86</td>
</tr>
<tr>
<td>H(25D)</td>
<td>8990</td>
<td>-2884</td>
<td>2031</td>
<td>110</td>
</tr>
<tr>
<td>H(25E)</td>
<td>9727</td>
<td>-2880</td>
<td>1152</td>
<td>110</td>
</tr>
<tr>
<td>H(25F)</td>
<td>8991</td>
<td>-4251</td>
<td>-2313</td>
<td>152</td>
</tr>
<tr>
<td>H(27E)</td>
<td>7889</td>
<td>-4131</td>
<td>-1911</td>
<td>152</td>
</tr>
<tr>
<td>H(27F)</td>
<td>6947</td>
<td>-3573</td>
<td>-2675</td>
<td>152</td>
</tr>
<tr>
<td>H(1')</td>
<td>6736</td>
<td>3688</td>
<td>3680</td>
<td>90</td>
</tr>
<tr>
<td>H(2')</td>
<td>6486</td>
<td>2512</td>
<td>3102</td>
<td>96</td>
</tr>
<tr>
<td>H(4')</td>
<td>8128</td>
<td>1901</td>
<td>6417</td>
<td>61</td>
</tr>
<tr>
<td>H(5')</td>
<td>8377</td>
<td>3077</td>
<td>6995</td>
<td>86</td>
</tr>
<tr>
<td>H(8A)</td>
<td>8603</td>
<td>5461</td>
<td>5789</td>
<td>93</td>
</tr>
<tr>
<td>H(8B)</td>
<td>7105</td>
<td>5601</td>
<td>5434</td>
<td>93</td>
</tr>
<tr>
<td>H(10A)</td>
<td>9711</td>
<td>5635</td>
<td>4430</td>
<td>138</td>
</tr>
<tr>
<td>H(10B)</td>
<td>8952</td>
<td>5749</td>
<td>3128</td>
<td>138</td>
</tr>
<tr>
<td>H(10C)</td>
<td>8911</td>
<td>5022</td>
<td>3690</td>
<td>138</td>
</tr>
<tr>
<td>H(11A)</td>
<td>6600</td>
<td>5788</td>
<td>2459</td>
<td>124</td>
</tr>
<tr>
<td>H(11B)</td>
<td>6530</td>
<td>5076</td>
<td>3043</td>
<td>124</td>
</tr>
<tr>
<td>H(12A)</td>
<td>5160</td>
<td>5441</td>
<td>3765</td>
<td>129</td>
</tr>
<tr>
<td>H(12B)</td>
<td>4728</td>
<td>5816</td>
<td>2579</td>
<td>129</td>
</tr>
<tr>
<td>H(13A)</td>
<td>4769</td>
<td>6697</td>
<td>4053</td>
<td>106</td>
</tr>
<tr>
<td>H(15A)</td>
<td>7988</td>
<td>6777</td>
<td>3704</td>
<td>102</td>
</tr>
<tr>
<td>H(16A)</td>
<td>9699</td>
<td>6567</td>
<td>5393</td>
<td>103</td>
</tr>
<tr>
<td>H(16B)</td>
<td>8742</td>
<td>6654</td>
<td>6077</td>
<td>103</td>
</tr>
<tr>
<td>H(17A)</td>
<td>9804</td>
<td>7854</td>
<td>5806</td>
<td>109</td>
</tr>
<tr>
<td>H(18A)</td>
<td>7934</td>
<td>7835</td>
<td>3836</td>
<td>60</td>
</tr>
<tr>
<td>H(20A)</td>
<td>7243</td>
<td>7452</td>
<td>6348</td>
<td>117</td>
</tr>
<tr>
<td>H(20B)</td>
<td>5733</td>
<td>7463</td>
<td>5798</td>
<td>117</td>
</tr>
<tr>
<td>H(20C)</td>
<td>6508</td>
<td>8165</td>
<td>6052</td>
<td>117</td>
</tr>
<tr>
<td>H(21A)</td>
<td>4697</td>
<td>7862</td>
<td>3830</td>
<td>98</td>
</tr>
<tr>
<td>H(21B)</td>
<td>5489</td>
<td>7931</td>
<td>3003</td>
<td>98</td>
</tr>
<tr>
<td>H(22A)</td>
<td>4798</td>
<td>9075</td>
<td>3287</td>
<td>127</td>
</tr>
<tr>
<td>H(22B)</td>
<td>5421</td>
<td>8996</td>
<td>4623</td>
<td>127</td>
</tr>
<tr>
<td>H(23A)</td>
<td>6844</td>
<td>8980</td>
<td>3083</td>
<td>103</td>
</tr>
<tr>
<td>H(23B)</td>
<td>6891</td>
<td>9595</td>
<td>3919</td>
<td>103</td>
</tr>
<tr>
<td>H(25A)</td>
<td>9939</td>
<td>8784</td>
<td>5001</td>
<td>97</td>
</tr>
<tr>
<td>H(25B)</td>
<td>9298</td>
<td>9489</td>
<td>4466</td>
<td>97</td>
</tr>
<tr>
<td>H(25C)</td>
<td>9152</td>
<td>8829</td>
<td>3693</td>
<td>97</td>
</tr>
<tr>
<td>H(27A)</td>
<td>7491</td>
<td>10409</td>
<td>6927</td>
<td>130</td>
</tr>
<tr>
<td>H(27B)</td>
<td>8845</td>
<td>10043</td>
<td>7355</td>
<td>130</td>
</tr>
<tr>
<td>H(27C)</td>
<td>7640</td>
<td>9671</td>
<td>7499</td>
<td>130</td>
</tr>
</tbody>
</table>

Experimental R1=(Σ||Fo|-|Fc||/Σ|Fo|), wR2=Σw(Fo²-Fc²)²/Σw[(Fo²)²]1/2, S=[Σw(Fo²-Fc²)²/(n-p)]1/2.
Phenyl rings were treated as regular hexagons of D_{6h} symmetry with C-C = 1.395 Å and C-C-C = 120°. Unit cell dimensions and standard deviations were

84
obtained by least squares fit to 16 reflections (14<2 <26°).

References

<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
<th>l</th>
<th>F₀^2</th>
<th>Fc^2</th>
<th>Δ(F^2)/esd</th>
<th>Fc/Fc(max)</th>
<th>Res(A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>1</td>
<td>187.31</td>
<td>21.98</td>
<td>4.58</td>
<td>0.014</td>
<td>9.52</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>0</td>
<td>11224.33</td>
<td>5492.79</td>
<td>4.42</td>
<td>0.228</td>
<td>2.09</td>
</tr>
<tr>
<td>-3</td>
<td>14</td>
<td>5</td>
<td>-93.15</td>
<td>273.07</td>
<td>4.08</td>
<td>0.051</td>
<td>1.18</td>
</tr>
<tr>
<td>-2</td>
<td>5</td>
<td>1</td>
<td>649.08</td>
<td>247.09</td>
<td>3.91</td>
<td>0.048</td>
<td>3.14</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>1</td>
<td>28888.57</td>
<td>17067.81</td>
<td>3.29</td>
<td>0.401</td>
<td>2.03</td>
</tr>
<tr>
<td>-1</td>
<td>9</td>
<td>1</td>
<td>60034.12</td>
<td>36897.02</td>
<td>3.05</td>
<td>0.590</td>
<td>2.08</td>
</tr>
<tr>
<td>-2</td>
<td>2</td>
<td>7</td>
<td>331.36</td>
<td>109.37</td>
<td>3.00</td>
<td>0.032</td>
<td>1.75</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>11</td>
<td>-204.61</td>
<td>2.23</td>
<td>2.98</td>
<td>0.005</td>
<td>1.02</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>0</td>
<td>18363.22</td>
<td>11442.89</td>
<td>2.93</td>
<td>0.328</td>
<td>3.60</td>
</tr>
<tr>
<td>-6</td>
<td>10</td>
<td>10</td>
<td>-156.03</td>
<td>101.36</td>
<td>2.93</td>
<td>0.031</td>
<td>1.00</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
<td>3</td>
<td>1498.62</td>
<td>855.68</td>
<td>2.91</td>
<td>0.090</td>
<td>1.48</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>700.98</td>
<td>376.68</td>
<td>2.87</td>
<td>0.060</td>
<td>10.35</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>5</td>
<td>-71.53</td>
<td>57.43</td>
<td>2.86</td>
<td>0.023</td>
<td>1.69</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>8</td>
<td>90.16</td>
<td>356.22</td>
<td>2.84</td>
<td>0.058</td>
<td>1.30</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>340.68</td>
<td>27.89</td>
<td>2.83</td>
<td>0.016</td>
<td>0.94</td>
</tr>
<tr>
<td>-4</td>
<td>4</td>
<td>10</td>
<td>-149.05</td>
<td>14.52</td>
<td>2.83</td>
<td>0.012</td>
<td>1.20</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>4</td>
<td>278.13</td>
<td>16.88</td>
<td>2.81</td>
<td>0.013</td>
<td>0.95</td>
</tr>
<tr>
<td>-1</td>
<td>16</td>
<td>3</td>
<td>296.76</td>
<td>714.14</td>
<td>2.81</td>
<td>0.082</td>
<td>1.15</td>
</tr>
<tr>
<td>-1</td>
<td>10</td>
<td>2</td>
<td>162.69</td>
<td>11.54</td>
<td>2.77</td>
<td>0.010</td>
<td>1.83</td>
</tr>
<tr>
<td>11</td>
<td>3</td>
<td>0</td>
<td>-261.83</td>
<td>1.14</td>
<td>2.77</td>
<td>0.003</td>
<td>0.93</td>
</tr>
<tr>
<td>-7</td>
<td>5</td>
<td>5</td>
<td>-76.52</td>
<td>111.15</td>
<td>2.77</td>
<td>0.032</td>
<td>1.40</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>4</td>
<td>-148.71</td>
<td>87.60</td>
<td>2.75</td>
<td>0.029</td>
<td>0.97</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>3</td>
<td>523.32</td>
<td>215.94</td>
<td>2.75</td>
<td>0.045</td>
<td>1.19</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>8</td>
<td>9.98</td>
<td>216.98</td>
<td>2.71</td>
<td>0.045</td>
<td>1.38</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>5</td>
<td>52.18</td>
<td>196.97</td>
<td>2.69</td>
<td>0.043</td>
<td>2.33</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>1</td>
<td>239.20</td>
<td>21.71</td>
<td>2.69</td>
<td>0.014</td>
<td>1.10</td>
</tr>
<tr>
<td>5</td>
<td>13</td>
<td>5</td>
<td>428.84</td>
<td>141.58</td>
<td>2.69</td>
<td>0.037</td>
<td>0.99</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>5</td>
<td>-18.30</td>
<td>135.38</td>
<td>2.68</td>
<td>0.036</td>
<td>1.71</td>
</tr>
<tr>
<td>-10</td>
<td>3</td>
<td>10</td>
<td>-224.90</td>
<td>9.82</td>
<td>2.68</td>
<td>0.010</td>
<td>0.94</td>
</tr>
<tr>
<td>1</td>
<td>4</td>
<td>0</td>
<td>4661.34</td>
<td>2964.77</td>
<td>2.67</td>
<td>0.167</td>
<td>4.35</td>
</tr>
<tr>
<td>-5</td>
<td>12</td>
<td>8</td>
<td>-68.53</td>
<td>164.16</td>
<td>2.67</td>
<td>0.039</td>
<td>1.07</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>8</td>
<td>-3.66</td>
<td>194.00</td>
<td>2.67</td>
<td>0.043</td>
<td>1.30</td>
</tr>
<tr>
<td>-11</td>
<td>1</td>
<td>5</td>
<td>144.39</td>
<td>507.13</td>
<td>2.67</td>
<td>0.069</td>
<td>1.00</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>4</td>
<td>-180.65</td>
<td>13.12</td>
<td>2.66</td>
<td>0.011</td>
<td>1.05</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>8</td>
<td>-28.94</td>
<td>161.35</td>
<td>2.66</td>
<td>0.039</td>
<td>1.29</td>
</tr>
<tr>
<td>-8</td>
<td>8</td>
<td>8</td>
<td>-124.43</td>
<td>95.62</td>
<td>2.61</td>
<td>0.030</td>
<td>1.07</td>
</tr>
<tr>
<td>0</td>
<td>8</td>
<td>4</td>
<td>392.67</td>
<td>175.69</td>
<td>2.61</td>
<td>0.041</td>
<td>1.86</td>
</tr>
<tr>
<td>-4</td>
<td>10</td>
<td>10</td>
<td>-161.36</td>
<td>24.94</td>
<td>2.59</td>
<td>0.015</td>
<td>1.04</td>
</tr>
<tr>
<td>0</td>
<td>14</td>
<td>3</td>
<td>622.70</td>
<td>319.96</td>
<td>2.56</td>
<td>0.055</td>
<td>1.29</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>0</td>
<td>1026.68</td>
<td>566.40</td>
<td>2.56</td>
<td>0.073</td>
<td>1.21</td>
</tr>
<tr>
<td>5</td>
<td>6</td>
<td>5</td>
<td>-57.89</td>
<td>131.83</td>
<td>2.55</td>
<td>0.035</td>
<td>1.24</td>
</tr>
<tr>
<td>-9</td>
<td>8</td>
<td>4</td>
<td>-64.87</td>
<td>135.79</td>
<td>2.55</td>
<td>0.036</td>
<td>1.09</td>
</tr>
<tr>
<td>1</td>
<td>14</td>
<td>1</td>
<td>4230.83</td>
<td>2715.46</td>
<td>2.55</td>
<td>0.160</td>
<td>1.34</td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>6</td>
<td>110.45</td>
<td>351.03</td>
<td>2.54</td>
<td>0.058</td>
<td>1.46</td>
</tr>
<tr>
<td>-7</td>
<td>2</td>
<td>10</td>
<td>9.65</td>
<td>236.98</td>
<td>2.54</td>
<td>0.047</td>
<td>1.11</td>
</tr>
<tr>
<td>0</td>
<td>12</td>
<td>0</td>
<td>1768.25</td>
<td>1080.90</td>
<td>2.54</td>
<td>0.101</td>
<td>1.60</td>
</tr>
<tr>
<td>9</td>
<td>3</td>
<td>2</td>
<td>-168.34</td>
<td>19.40</td>
<td>2.52</td>
<td>0.014</td>
<td>1.05</td>
</tr>
<tr>
<td>-2</td>
<td>12</td>
<td>5</td>
<td>1064.94</td>
<td>608.80</td>
<td>2.52</td>
<td>0.076</td>
<td>1.34</td>
</tr>
<tr>
<td>-1</td>
<td>16</td>
<td>5</td>
<td>109.46</td>
<td>403.03</td>
<td>2.52</td>
<td>0.062</td>
<td>1.08</td>
</tr>
<tr>
<td>-10</td>
<td>9</td>
<td>6</td>
<td>-186.64</td>
<td>32.39</td>
<td>2.51</td>
<td>0.017</td>
<td>0.96</td>
</tr>
</tbody>
</table>
X-Ray data of compound 42

![Chemical structure diagram](image)

Table 1. Crystal data and structure refinement for 42

<table>
<thead>
<tr>
<th>Description</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Empirical formula</td>
<td>C_{27}H_{34.50}BrO_{4}</td>
</tr>
<tr>
<td>Formula weight</td>
<td>502.96</td>
</tr>
<tr>
<td>Temperature</td>
<td>22 °C</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P2₁</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 10.801(6)Å, alpha = 90°</td>
</tr>
<tr>
<td></td>
<td>b = 22.481(11)Å, beta = 109.45(4)°</td>
</tr>
<tr>
<td></td>
<td>c = 10.819(5)Å, gamma = 90°</td>
</tr>
<tr>
<td>Crystal size</td>
<td>0.80 x 0.50 x 0.06 mm</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.349 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>1.689 mm⁻¹</td>
</tr>
<tr>
<td>Volume, Z, F(000)</td>
<td>2477(2) Å³, 4, 1054</td>
</tr>
<tr>
<td>θ range for data collection</td>
<td>1.81 to 22.50°</td>
</tr>
<tr>
<td>Limiting indices</td>
<td>-11 ≤ h ≤ 10, 0 ≤ k < 21, -10 ≤ l ≤ 10</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>2728, 1179 observed [I>2σ(I)]</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>2579 (R_{int} = 0.0747)</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>None</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>2578 / 1 / 257</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.035</td>
</tr>
<tr>
<td>Final R indices [I>2σ(I)]</td>
<td>R1 = 0.1126, wR2 = 0.2667</td>
</tr>
<tr>
<td>R indices (all data)</td>
<td>R1 = 0.2329, wR2 = 0.3694</td>
</tr>
<tr>
<td>Absolute structure parameter</td>
<td>0.00(6)</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.625 and -0.627 eÅ³</td>
</tr>
<tr>
<td>Scan speed, range, type</td>
<td>5°/minute, 0.6°, Wyckoff</td>
</tr>
<tr>
<td>Background range, % time</td>
<td>0.6°, 25% each side</td>
</tr>
</tbody>
</table>

Table 2. Atomic coordinates [x x 10⁴] and equivalent isotropic displacement parameters [Å² x 10³] for 42. U(eq) is defined as one third of the trace of the orthogonalized U_{ij} tensor.

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
</table>

86
<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>C (1)</td>
<td>-4359 (19)</td>
<td>-2240 (9)</td>
<td>-3220 (19)</td>
<td>75 (12)</td>
</tr>
<tr>
<td>C (2)</td>
<td>-3091 (20)</td>
<td>-2403 (9)</td>
<td>-3148 (21)</td>
<td>82 (13)</td>
</tr>
<tr>
<td>C (3)</td>
<td>-2423 (15)</td>
<td>-1583 (11)</td>
<td>-4566 (22)</td>
<td>74 (12)</td>
</tr>
<tr>
<td>C (4)</td>
<td>-3023 (19)</td>
<td>-1583 (11)</td>
<td>-4638 (19)</td>
<td>60 (11)</td>
</tr>
<tr>
<td>C (5)</td>
<td>-4291 (19)</td>
<td>-1419 (9)</td>
<td>-4638 (19)</td>
<td>60 (11)</td>
</tr>
<tr>
<td>C (6)</td>
<td>-4959 (15)</td>
<td>-1748 (8)</td>
<td>-3965 (16)</td>
<td>35 (9)</td>
</tr>
<tr>
<td>C (7)</td>
<td>-6309 (17)</td>
<td>-1589 (13)</td>
<td>-4075 (26)</td>
<td>53 (11)</td>
</tr>
<tr>
<td>Br (1)</td>
<td>-675 (5)</td>
<td>-2235 (3)</td>
<td>-3662 (5)</td>
<td>99 (2)</td>
</tr>
<tr>
<td>O (1)</td>
<td>-6805 (25)</td>
<td>-1163 (12)</td>
<td>-4847 (24)</td>
<td>64 (8)</td>
</tr>
<tr>
<td>O (2)</td>
<td>-6846 (29)</td>
<td>-1821 (14)</td>
<td>-3383 (28)</td>
<td>93 (10)</td>
</tr>
<tr>
<td>O (3)</td>
<td>-14596 (22)</td>
<td>-191 (16)</td>
<td>-6693 (24)</td>
<td>51 (11)</td>
</tr>
<tr>
<td>O (4)</td>
<td>-15258 (20)</td>
<td>631 (10)</td>
<td>-7812 (21)</td>
<td>55 (7)</td>
</tr>
<tr>
<td>C (8)</td>
<td>-8113 (36)</td>
<td>-947 (17)</td>
<td>-4814 (36)</td>
<td>56 (11)</td>
</tr>
<tr>
<td>C (9)</td>
<td>-8475 (36)</td>
<td>-399 (17)</td>
<td>-6955 (32)</td>
<td>54 (10)</td>
</tr>
<tr>
<td>C (10)</td>
<td>-8369 (35)</td>
<td>88 (16)</td>
<td>-5041 (33)</td>
<td>54 (11)</td>
</tr>
<tr>
<td>C (11)</td>
<td>-7453 (34)</td>
<td>666 (16)</td>
<td>-5729 (36)</td>
<td>61 (11)</td>
</tr>
<tr>
<td>C (12)</td>
<td>-9105 (35)</td>
<td>830 (19)</td>
<td>-6190 (35)</td>
<td>67 (12)</td>
</tr>
<tr>
<td>C (13)</td>
<td>-10088 (31)</td>
<td>429 (15)</td>
<td>-6317 (29)</td>
<td>36 (9)</td>
</tr>
<tr>
<td>C (14)</td>
<td>-9801 (33)</td>
<td>-199 (20)</td>
<td>-5809 (32)</td>
<td>51 (10)</td>
</tr>
<tr>
<td>C (15)</td>
<td>-10307 (25)</td>
<td>-260 (15)</td>
<td>-4665 (26)</td>
<td>32 (8)</td>
</tr>
<tr>
<td>C (16)</td>
<td>-11794 (35)</td>
<td>-127 (18)</td>
<td>-5067 (37)</td>
<td>69 (11)</td>
</tr>
<tr>
<td>C (17)</td>
<td>-12019 (31)</td>
<td>506 (15)</td>
<td>-5530 (31)</td>
<td>46 (9)</td>
</tr>
<tr>
<td>C (18)</td>
<td>-11587 (30)</td>
<td>663 (16)</td>
<td>-6633 (30)</td>
<td>36 (9)</td>
</tr>
<tr>
<td>C (19)</td>
<td>-12310 (32)</td>
<td>330 (16)</td>
<td>-7958 (30)</td>
<td>54 (10)</td>
</tr>
<tr>
<td>C (20)</td>
<td>-11675 (32)</td>
<td>1324 (15)</td>
<td>-6890 (35)</td>
<td>54 (10)</td>
</tr>
<tr>
<td>C (21)</td>
<td>-13040 (30)</td>
<td>1557 (16)</td>
<td>-7173 (31)</td>
<td>46 (9)</td>
</tr>
<tr>
<td>C (22)</td>
<td>-13583 (34)</td>
<td>1381 (16)</td>
<td>-6137 (36)</td>
<td>60 (11)</td>
</tr>
<tr>
<td>C (23)</td>
<td>-13460 (32)</td>
<td>742 (16)</td>
<td>-5770 (31)</td>
<td>45 (9)</td>
</tr>
<tr>
<td>C (24)</td>
<td>-13813 (40)</td>
<td>665 (20)</td>
<td>-4496 (39)</td>
<td>87 (13)</td>
</tr>
<tr>
<td>C (25)</td>
<td>-14501 (39)</td>
<td>327 (21)</td>
<td>-6854 (40)</td>
<td>49 (11)</td>
</tr>
<tr>
<td>C (26)</td>
<td>-16213 (41)</td>
<td>293 (20)</td>
<td>-8779 (39)</td>
<td>87 (14)</td>
</tr>
<tr>
<td>C (1')</td>
<td>-10498 (21)</td>
<td>2 (8)</td>
<td>-11208 (21)</td>
<td>60 (11)</td>
</tr>
<tr>
<td>C (2')</td>
<td>-11807 (22)</td>
<td>128 (9)</td>
<td>-11368 (23)</td>
<td>81 (13)</td>
</tr>
<tr>
<td>C (3')</td>
<td>-12670 (17)</td>
<td>-332 (12)</td>
<td>-11360 (21)</td>
<td>65 (12)</td>
</tr>
<tr>
<td>C (4')</td>
<td>-12225 (21)</td>
<td>-919 (11)</td>
<td>-11192 (23)</td>
<td>78 (13)</td>
</tr>
<tr>
<td>C (5')</td>
<td>-10916 (22)</td>
<td>-1045 (8)</td>
<td>-11032 (22)</td>
<td>69 (12)</td>
</tr>
<tr>
<td>C (6')</td>
<td>-10053 (17)</td>
<td>-585 (9)</td>
<td>-11040 (16)</td>
<td>65 (13)</td>
</tr>
<tr>
<td>C (7')</td>
<td>-8687 (19)</td>
<td>-719 (14)</td>
<td>-10915 (28)</td>
<td>62 (12)</td>
</tr>
<tr>
<td>Br (2)</td>
<td>-14430 (4)</td>
<td>-182 (3)</td>
<td>-11569 (5)</td>
<td>103 (2)</td>
</tr>
<tr>
<td>O (1')</td>
<td>-8284 (25)</td>
<td>-1227 (12)</td>
<td>-10352 (24)</td>
<td>62 (8)</td>
</tr>
<tr>
<td>O (2')</td>
<td>-7976 (26)</td>
<td>-324 (13)</td>
<td>-11199 (25)</td>
<td>84 (9)</td>
</tr>
<tr>
<td>O (3')</td>
<td>-1068 (22)</td>
<td>-2486 (14)</td>
<td>-10054 (23)</td>
<td>80 (10)</td>
</tr>
<tr>
<td>O (4')</td>
<td>-445 (23)</td>
<td>-3407 (14)</td>
<td>-9330 (21)</td>
<td>72 (8)</td>
</tr>
<tr>
<td>C (8')</td>
<td>-6860 (39)</td>
<td>-1338 (20)</td>
<td>-10035 (41)</td>
<td>69 (13)</td>
</tr>
<tr>
<td>C (9')</td>
<td>-6619 (33)</td>
<td>-1947 (16)</td>
<td>-9411 (31)</td>
<td>41 (10)</td>
</tr>
<tr>
<td>C (10')</td>
<td>-7605 (40)</td>
<td>-2403 (19)</td>
<td>-10277 (39)</td>
<td>81 (14)</td>
</tr>
<tr>
<td>C (11')</td>
<td>-6778 (37)</td>
<td>-1936 (17)</td>
<td>-8042 (33)</td>
<td>54 (11)</td>
</tr>
<tr>
<td>C (12')</td>
<td>-6533 (42)</td>
<td>-2497 (19)</td>
<td>-7386 (43)</td>
<td>88 (15)</td>
</tr>
<tr>
<td>C (13')</td>
<td>-5361 (32)</td>
<td>-2842 (16)</td>
<td>-7555 (32)</td>
<td>54 (10)</td>
</tr>
<tr>
<td>C (14')</td>
<td>-4756 (41)</td>
<td>-2677 (19)</td>
<td>-8398 (39)</td>
<td>66 (13)</td>
</tr>
<tr>
<td>C (15')</td>
<td>-5170 (35)</td>
<td>-2170 (20)</td>
<td>-9266 (34)</td>
<td>56 (11)</td>
</tr>
<tr>
<td>C (16')</td>
<td>-4155 (39)</td>
<td>-1651 (21)</td>
<td>-8846 (43)</td>
<td>89 (14)</td>
</tr>
<tr>
<td>C (17')</td>
<td>-2814 (37)</td>
<td>-1912 (17)</td>
<td>-8821 (38)</td>
<td>66 (11)</td>
</tr>
<tr>
<td>C (18')</td>
<td>-2454 (35)</td>
<td>-2483 (17)</td>
<td>-8035 (37)</td>
<td>63 (11)</td>
</tr>
<tr>
<td>C (19')</td>
<td>-3505 (34)</td>
<td>-2953 (16)</td>
<td>-8371 (32)</td>
<td>44 (10)</td>
</tr>
<tr>
<td>C (20')</td>
<td>-3739 (31)</td>
<td>-3239 (16)</td>
<td>-9773 (29)</td>
<td>50 (10)</td>
</tr>
<tr>
<td>C (21')</td>
<td>-3031 (33)</td>
<td>-3461 (16)</td>
<td>-7390 (33)</td>
<td>53 (10)</td>
</tr>
</tbody>
</table>
Table 3. Bond lengths [Å] and angles [°] for 42

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length/Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>C(1)–C(6)</td>
<td>1.39</td>
</tr>
<tr>
<td>C(1)–C(2)</td>
<td>1.40</td>
</tr>
<tr>
<td>C(2)–C(3)</td>
<td>1.40</td>
</tr>
<tr>
<td>C(3)–C(4)</td>
<td>1.39</td>
</tr>
<tr>
<td>C(3)–Br(1)</td>
<td>1.87(2)</td>
</tr>
<tr>
<td>C(4)–C(5)</td>
<td>1.39</td>
</tr>
<tr>
<td>C(5)–C(6)</td>
<td>1.39</td>
</tr>
<tr>
<td>C(6)–C(7)</td>
<td>1.47</td>
</tr>
<tr>
<td>C(7)–O(2)</td>
<td>1.21(3)</td>
</tr>
<tr>
<td>C(7)–O(1)</td>
<td>1.27(3)</td>
</tr>
<tr>
<td>O(1)–C(8)</td>
<td>1.51(4)</td>
</tr>
<tr>
<td>O(3)–C(26)</td>
<td>1.19(5)</td>
</tr>
<tr>
<td>O(4)–C(26)</td>
<td>1.28(4)</td>
</tr>
<tr>
<td>O(4)–C(27)</td>
<td>1.42(4)</td>
</tr>
<tr>
<td>C(8)–C(9)</td>
<td>1.52(5)</td>
</tr>
<tr>
<td>C(9)–C(10)</td>
<td>1.44(5)</td>
</tr>
<tr>
<td>C(9)–C(15)</td>
<td>1.46(5)</td>
</tr>
<tr>
<td>C(9)–C(11)</td>
<td>1.55(4)</td>
</tr>
<tr>
<td>C(11)–C(12)</td>
<td>1.48(5)</td>
</tr>
<tr>
<td>C(12)–C(13)</td>
<td>1.48(4)</td>
</tr>
<tr>
<td>C(13)–C(14)</td>
<td>1.36(4)</td>
</tr>
<tr>
<td>C(14)–C(15)</td>
<td>1.51(5)</td>
</tr>
<tr>
<td>C(14)–C(19)</td>
<td>1.63(4)</td>
</tr>
<tr>
<td>C(15)–C(16)</td>
<td>1.52(4)</td>
</tr>
<tr>
<td>C(16)–C(17)</td>
<td>1.55(4)</td>
</tr>
<tr>
<td>C(17)–C(18)</td>
<td>1.50(5)</td>
</tr>
<tr>
<td>C(18)–C(19)</td>
<td>1.46(4)</td>
</tr>
<tr>
<td>C(18)–C(24)</td>
<td>1.58(4)</td>
</tr>
<tr>
<td>C(19)–C(21)</td>
<td>1.51(5)</td>
</tr>
<tr>
<td>C(19)–C(20)</td>
<td>1.58(4)</td>
</tr>
<tr>
<td>C(21)–C(22)</td>
<td>1.50(4)</td>
</tr>
<tr>
<td>C(22)–C(23)</td>
<td>1.48(4)</td>
</tr>
<tr>
<td>C(23)–C(24)</td>
<td>1.48(5)</td>
</tr>
<tr>
<td>C(24)–C(25)</td>
<td>1.56(5)</td>
</tr>
<tr>
<td>C(24)–C(26)</td>
<td>1.62(5)</td>
</tr>
<tr>
<td>C(1'')–C(2'')</td>
<td>1.39</td>
</tr>
<tr>
<td>C(1'')–C(6')</td>
<td>1.40</td>
</tr>
<tr>
<td>C(2'')–C(3'')</td>
<td>1.40</td>
</tr>
<tr>
<td>C(3'')–C(4'')</td>
<td>1.39</td>
</tr>
<tr>
<td>C(3')–Br(2)</td>
<td>1.87(2)</td>
</tr>
<tr>
<td>C(4'')–C(5'')</td>
<td>1.39</td>
</tr>
<tr>
<td>C(5'')–C(6')</td>
<td>1.39</td>
</tr>
<tr>
<td>C(6')–C(7')</td>
<td>1.47</td>
</tr>
<tr>
<td>C(7')–O(2')</td>
<td>1.28(4)</td>
</tr>
<tr>
<td>C(7')–O(1')</td>
<td>1.30(4)</td>
</tr>
<tr>
<td>O(1')–C(8')</td>
<td>1.48(4)</td>
</tr>
<tr>
<td>O(3')–C(26')</td>
<td>1.32(4)</td>
</tr>
<tr>
<td>O(4')–C(27')</td>
<td>1.35(4)</td>
</tr>
</tbody>
</table>
C(18)–C(19)–C(21) 112(3)
C(18)–C(19)–C(20) 116(3)
C(21)–C(19)–C(20) 109(3)
C(20)–C(19)–C(14) 108(3)
C(21)–C(19)–C(14) 111(3)
C(22)–C(21)–C(19) 112(3)
C(23)–C(22)–C(21) 111(3)
C(22)–C(23)–C(24) 116(3)
C(23)–C(24)–C(25) 109(3)
C(23)–C(24)–C(18) 111(3)
C(25)–C(24)–C(18) 110(3)
C(23)–C(24)–C(26) 113(3)
C(25)–C(24)–C(26) 105(3)
C(18)–C(24)–C(26) 109(3)
O(3)–C(26)–O(4) 125(4)
O(3)–C(26)–C(24) 122(4)
O(4)–C(26)–C(24) 112(3)
C(2′)–C(1′)–C(6′) 120.0
C(1′)–C(2′)–C(3′) 120.0
C(4′)–C(3′)–C(2′) 120.0
C(4′)–C(3′)–Br(2) 118.7(14)
C(2′)–C(3′)–Br(2) 121.3(14)
C(3′)–C(4′)–C(5′) 120.0
C(6′)–C(5′)–C(4′) 120.0
C(5′)–C(6′)–C(1′) 120.0
C(5′)–C(6′)–C(7′) 120.1
C(1′)–C(6′)–C(7′) 119.9
O(2′)–C(7′)–O(1′) 126(2)
O(2′)–C(7′)–C(6′) 120(2)
O(1′)–C(7′)–C(6′) 113(2)
C(7′)–O(1′)–C(8′) 115(3)
C(27′)–O(4′)–C(26′) 122(3)
O(1′)–C(8′)–C(9′) 105(3)
C(8′)–C(9′)–C(11′) 111(3)
C(8′)–C(9′)–C(10′) 110(3)
C(11′)–C(9′)–C(10′) 109(3)
C(10′)–C(9′)–C(15′) 108(3)
C(11′)–C(9′)–C(15′) 109(3)
C(12′)–C(11′)–C(9′) 114(3)
C(11′)–C(12′)–C(13′) 114(4)
C(14′)–C(13′)–C(12′) 123(4)
C(13′)–C(14′)–C(15′) 123(4)
C(13′)–C(14′)–C(19′) 121(4)
C(15′)–C(14′)–C(19′) 115(4)
C(14′)–C(15′)–C(16′) 111(3)
C(14′)–C(15′)–C(9′) 113(3)
C(16′)–C(15′)–C(9′) 111(3)
C(17′)–C(16′)–C(15′) 106(3)
C(18′)–C(17′)–C(16′) 113(3)
C(19′)–C(18′)–C(17′) 115(3)
C(19′)–C(18′)–C(24′) 116(3)
C(17′)–C(18′)–C(24′) 113(3)
C(14′)–C(19′)–C(18′) 109(3)
C(14′)–C(19′)–C(21′) 115(3)
C(18′)–C(19′)–C(21′) 108(3)
C(14′)–C(19′)–C(20′) 107(3)
Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters \([\text{Å}^2 \times 10^3]\) for 42. The factor exponent takes the form:

\[-2\pi^2 \left(h^2 U_{11} + \ldots + 2hka*b*U_{12} \right)\]

<table>
<thead>
<tr>
<th></th>
<th>U11</th>
<th>U22</th>
<th>U33</th>
<th>U23</th>
<th>U13</th>
<th>U12</th>
</tr>
</thead>
<tbody>
<tr>
<td>Br(1)</td>
<td>69(3)</td>
<td>140(5)</td>
<td>90(4)</td>
<td>5(4)</td>
<td>29(3)</td>
<td>33(4)</td>
</tr>
<tr>
<td>O(3)</td>
<td>42(15)</td>
<td>106(27)</td>
<td>77(18)</td>
<td>33(19)</td>
<td>-12(13)</td>
<td>13(17)</td>
</tr>
<tr>
<td>O(4)</td>
<td>37(14)</td>
<td>58(17)</td>
<td>47(15)</td>
<td>14(14)</td>
<td>-17(12)</td>
<td>3(14)</td>
</tr>
<tr>
<td>Br(2)</td>
<td>50(3)</td>
<td>174(6)</td>
<td>83(3)</td>
<td>18(4)</td>
<td>18(2)</td>
<td>44(4)</td>
</tr>
<tr>
<td>O(3')</td>
<td>46(15)</td>
<td>150(29)</td>
<td>44(16)</td>
<td>-5(18)</td>
<td>15(13)</td>
<td>-13(17)</td>
</tr>
<tr>
<td>O(4')</td>
<td>70(17)</td>
<td>127(26)</td>
<td>35(14)</td>
<td>3(16)</td>
<td>37(13)</td>
<td>23(17)</td>
</tr>
</tbody>
</table>

Table 5. Hydrogen coordinates \((x \times 10^4)\) and isotropic displacement parameters \((\text{Å}^2 \times 10^3)\) for 42.

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>U(eq)</th>
</tr>
</thead>
<tbody>
<tr>
<td>H(1)</td>
<td>-4818(26)</td>
<td>-2466(12)</td>
<td>-2757(28)</td>
<td>90</td>
</tr>
<tr>
<td>H(2)</td>
<td>-2678(27)</td>
<td>-2742(12)</td>
<td>-2635(30)</td>
<td>98</td>
</tr>
<tr>
<td>H(4)</td>
<td>-2563(26)</td>
<td>-1356(14)</td>
<td>-5029(31)</td>
<td>88</td>
</tr>
<tr>
<td>H(5)</td>
<td>-4704(27)</td>
<td>-1080(11)</td>
<td>-5151(28)</td>
<td>73</td>
</tr>
<tr>
<td>H(8A)</td>
<td>-8054(36)</td>
<td>-848(17)</td>
<td>-3923(36)</td>
<td>67</td>
</tr>
<tr>
<td>H(8B)</td>
<td>-8774(36)</td>
<td>-1253(17)</td>
<td>-5138(36)</td>
<td>67</td>
</tr>
<tr>
<td>H(10A)</td>
<td>-7496(35)</td>
<td>-612(16)</td>
<td>-6866(32)</td>
<td>81</td>
</tr>
<tr>
<td>H(10B)</td>
<td>-8553(35)</td>
<td>-116(16)</td>
<td>-7431(32)</td>
<td>81</td>
</tr>
<tr>
<td>H(10C)</td>
<td>-8988(35)</td>
<td>-781(16)</td>
<td>-7422(32)</td>
<td>81</td>
</tr>
<tr>
<td>H(11A)</td>
<td>-7435(34)</td>
<td>149(16)</td>
<td>-4148(33)</td>
<td>65</td>
</tr>
<tr>
<td>H(11B)</td>
<td>-6592(34)</td>
<td>-54(16)</td>
<td>-5001(33)</td>
<td>65</td>
</tr>
<tr>
<td>H(12A)</td>
<td>-7389(34)</td>
<td>647(16)</td>
<td>-6474(36)</td>
<td>74</td>
</tr>
<tr>
<td>H(12B)</td>
<td>-7199(34)</td>
<td>973(16)</td>
<td>-5141(36)</td>
<td>74</td>
</tr>
<tr>
<td>H(13A)</td>
<td>-9330(35)</td>
<td>1225(19)</td>
<td>-6405(35)</td>
<td>81</td>
</tr>
<tr>
<td>H(15A)</td>
<td>-10384(33)</td>
<td>-449(20)</td>
<td>-6501(32)</td>
<td>62</td>
</tr>
<tr>
<td>H(16A)</td>
<td>-9832(25)</td>
<td>13(15)</td>
<td>-3975(26)</td>
<td>38</td>
</tr>
<tr>
<td>H(16B)</td>
<td>-10142(25)</td>
<td>-661(15)</td>
<td>-4318(26)</td>
<td>38</td>
</tr>
<tr>
<td>H(17A)</td>
<td>-12281(35)</td>
<td>-394(18)</td>
<td>-5764(37)</td>
<td>83</td>
</tr>
<tr>
<td>H(17B)</td>
<td>-12094(35)</td>
<td>-185(18)</td>
<td>-4325(37)</td>
<td>83</td>
</tr>
<tr>
<td>H(18A)</td>
<td>-11462(31)</td>
<td>743(15)</td>
<td>-4794(31)</td>
<td>55</td>
</tr>
<tr>
<td>H(20A)</td>
<td>-11960(32)</td>
<td>460(16)</td>
<td>-8619(30)</td>
<td>81</td>
</tr>
</tbody>
</table>
Phenyl rings were treated as regular hexagons of D$_{6h}$ symmetry with C-C = 1.395 Å and C-C-C = 120°. Unit cell dimensions and standard deviations were obtained by least squares fit to 14 reflections (14<2θ<22°).
<table>
<thead>
<tr>
<th>h</th>
<th>k</th>
<th>l</th>
<th>F_o^2</th>
<th>F_c^2</th>
<th>$\Delta(F^2)/\text{esd}$</th>
<th>$F_c/F_c(\text{max})$</th>
<th>Res (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>12</td>
<td>0</td>
<td>-452.12</td>
<td>47.83</td>
<td>3.54</td>
<td>0.031</td>
<td>1.38</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>6</td>
<td>160.38</td>
<td>879.26</td>
<td>3.29</td>
<td>0.131</td>
<td>1.29</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>2</td>
<td>4304.55</td>
<td>2244.03</td>
<td>3.27</td>
<td>0.209</td>
<td>1.23</td>
</tr>
<tr>
<td>-1</td>
<td>20</td>
<td>3</td>
<td>563.02</td>
<td>4.83</td>
<td>3.14</td>
<td>0.010</td>
<td>1.07</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>6</td>
<td>486.25</td>
<td>1385.35</td>
<td>3.03</td>
<td>0.165</td>
<td>1.23</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>1</td>
<td>3304.76</td>
<td>1854.08</td>
<td>2.99</td>
<td>0.190</td>
<td>2.31</td>
</tr>
<tr>
<td>-10</td>
<td>8</td>
<td>5</td>
<td>-493.07</td>
<td>2.62</td>
<td>2.96</td>
<td>0.007</td>
<td>0.99</td>
</tr>
<tr>
<td>2</td>
<td>14</td>
<td>1</td>
<td>-172.32</td>
<td>189.38</td>
<td>2.95</td>
<td>0.061</td>
<td>1.49</td>
</tr>
<tr>
<td>-3</td>
<td>19</td>
<td>2</td>
<td>-32.42</td>
<td>521.83</td>
<td>2.91</td>
<td>0.101</td>
<td>1.12</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>0</td>
<td>102.37</td>
<td>759.92</td>
<td>2.90</td>
<td>0.122</td>
<td>1.17</td>
</tr>
<tr>
<td>-1</td>
<td>16</td>
<td>2</td>
<td>-394.11</td>
<td>12.04</td>
<td>2.88</td>
<td>0.015</td>
<td>1.36</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>168.91</td>
<td>696.11</td>
<td>2.87</td>
<td>0.117</td>
<td>1.46</td>
</tr>
<tr>
<td>-7</td>
<td>13</td>
<td>3</td>
<td>499.89</td>
<td>38.35</td>
<td>2.86</td>
<td>0.027</td>
<td>1.15</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>6</td>
<td>902.54</td>
<td>332.32</td>
<td>2.85</td>
<td>0.081</td>
<td>1.31</td>
</tr>
<tr>
<td>-2</td>
<td>18</td>
<td>5</td>
<td>-479.42</td>
<td>1.34</td>
<td>2.84</td>
<td>0.005</td>
<td>1.08</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>6</td>
<td>-114.31</td>
<td>269.56</td>
<td>2.81</td>
<td>0.073</td>
<td>1.47</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>6</td>
<td>547.67</td>
<td>68.00</td>
<td>2.80</td>
<td>0.036</td>
<td>1.22</td>
</tr>
<tr>
<td>2</td>
<td>5</td>
<td>3</td>
<td>607.38</td>
<td>1277.47</td>
<td>2.79</td>
<td>0.158</td>
<td>2.17</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>5</td>
<td>650.03</td>
<td>143.59</td>
<td>2.76</td>
<td>0.053</td>
<td>1.16</td>
</tr>
<tr>
<td>5</td>
<td>4</td>
<td>0</td>
<td>494.78</td>
<td>147.83</td>
<td>2.76</td>
<td>0.054</td>
<td>1.91</td>
</tr>
<tr>
<td>1</td>
<td>9</td>
<td>6</td>
<td>131.37</td>
<td>625.21</td>
<td>2.73</td>
<td>0.111</td>
<td>1.34</td>
</tr>
<tr>
<td>-6</td>
<td>1</td>
<td>2</td>
<td>235.45</td>
<td>662.42</td>
<td>2.67</td>
<td>0.114</td>
<td>1.79</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>3</td>
<td>5551.73</td>
<td>3335.92</td>
<td>2.67</td>
<td>0.255</td>
<td>1.54</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>5</td>
<td>506.72</td>
<td>53.90</td>
<td>2.66</td>
<td>0.032</td>
<td>1.13</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>1</td>
<td>2366.40</td>
<td>1372.84</td>
<td>2.62</td>
<td>0.164</td>
<td>1.62</td>
</tr>
<tr>
<td>-4</td>
<td>12</td>
<td>4</td>
<td>-332.69</td>
<td>9.64</td>
<td>2.62</td>
<td>0.014</td>
<td>1.43</td>
</tr>
<tr>
<td>-2</td>
<td>7</td>
<td>3</td>
<td>472.60</td>
<td>191.80</td>
<td>2.60</td>
<td>0.061</td>
<td>2.33</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>8</td>
<td>545.96</td>
<td>111.16</td>
<td>2.58</td>
<td>0.047</td>
<td>1.17</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>5</td>
<td>-218.38</td>
<td>170.55</td>
<td>2.57</td>
<td>0.058</td>
<td>1.25</td>
</tr>
<tr>
<td>3</td>
<td>11</td>
<td>3</td>
<td>1409.26</td>
<td>2636.11</td>
<td>2.56</td>
<td>0.227</td>
<td>1.46</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>0</td>
<td>-29.00</td>
<td>435.15</td>
<td>2.55</td>
<td>0.092</td>
<td>1.21</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>1</td>
<td>632.97</td>
<td>1241.97</td>
<td>2.54</td>
<td>0.156</td>
<td>1.94</td>
</tr>
<tr>
<td>-8</td>
<td>3</td>
<td>5</td>
<td>320.75</td>
<td>911.52</td>
<td>2.52</td>
<td>0.133</td>
<td>1.27</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>6</td>
<td>-272.98</td>
<td>158.75</td>
<td>2.52</td>
<td>0.056</td>
<td>1.21</td>
</tr>
<tr>
<td>-4</td>
<td>19</td>
<td>3</td>
<td>-162.08</td>
<td>333.71</td>
<td>2.51</td>
<td>0.081</td>
<td>1.07</td>
</tr>
<tr>
<td>-4</td>
<td>9</td>
<td>2</td>
<td>-6.82</td>
<td>294.67</td>
<td>2.50</td>
<td>0.076</td>
<td>1.82</td>
</tr>
<tr>
<td>-10</td>
<td>10</td>
<td>4</td>
<td>-300.28</td>
<td>129.68</td>
<td>2.50</td>
<td>0.050</td>
<td>0.97</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>4</td>
<td>498.19</td>
<td>86.97</td>
<td>2.49</td>
<td>0.041</td>
<td>1.20</td>
</tr>
<tr>
<td>-8</td>
<td>12</td>
<td>1</td>
<td>999.79</td>
<td>420.93</td>
<td>2.47</td>
<td>0.091</td>
<td>1.08</td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>3</td>
<td>421.41</td>
<td>0.14</td>
<td>2.44</td>
<td>0.002</td>
<td>1.07</td>
</tr>
<tr>
<td>-2</td>
<td>14</td>
<td>1</td>
<td>151.85</td>
<td>538.96</td>
<td>2.44</td>
<td>0.103</td>
<td>1.54</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>4</td>
<td>-220.09</td>
<td>50.49</td>
<td>2.43</td>
<td>0.031</td>
<td>1.61</td>
</tr>
<tr>
<td>-4</td>
<td>5</td>
<td>4</td>
<td>-141.61</td>
<td>88.85</td>
<td>2.42</td>
<td>0.042</td>
<td>1.98</td>
</tr>
<tr>
<td>1</td>
<td>12</td>
<td>6</td>
<td>-64.83</td>
<td>331.86</td>
<td>2.38</td>
<td>0.081</td>
<td>1.21</td>
</tr>
<tr>
<td>-2</td>
<td>19</td>
<td>1</td>
<td>-184.26</td>
<td>234.99</td>
<td>2.38</td>
<td>0.068</td>
<td>1.15</td>
</tr>
<tr>
<td>4</td>
<td>17</td>
<td>2</td>
<td>440.18</td>
<td>41.94</td>
<td>2.36</td>
<td>0.029</td>
<td>1.11</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>7</td>
<td>-276.39</td>
<td>72.57</td>
<td>2.36</td>
<td>0.038</td>
<td>1.29</td>
</tr>
<tr>
<td>3</td>
<td>5</td>
<td>1</td>
<td>946.90</td>
<td>543.30</td>
<td>2.34</td>
<td>0.103</td>
<td>2.46</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>6</td>
<td>-141.61</td>
<td>280.87</td>
<td>2.34</td>
<td>0.074</td>
<td>1.16</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>8</td>
<td>-334.40</td>
<td>41.94</td>
<td>2.34</td>
<td>0.029</td>
<td>1.08</td>
</tr>
</tbody>
</table>