Total Synthesis of Truncated Brevetoxin B [AFGHIJK]

Departments of Chemistry, The Scripps Research Institute, 10666 North Torrey Pines Road, La Jolla, California 92037
University of California, San Diego
9500 Gilman Drive, La Jolla, California 92037

Received June 23, 1994

Brevetoxin B (1),¹ a member of the "red tide"-associated class of marine neurotoxins,² possesses a striking biological profile as a sodium channel modulator³ and a formidable molecular structure that includes 11 fused rings and 23 stereocenters. Several synthetic methods and schemes have been advanced toward the synthesis of this molecule,[4,5] but to date, no total synthesis of brevetoxin B (1) or designed analogs have been reported. Herein, we report the design and synthesis of a novel version of this compound, truncated brevetoxin B [AFGHIJK] (2), in which all the functionality within the natural compound is present, except for the internal rings BCDE (Figure 1). Such a design was considered important in that it could test the "length hypothesis" of the brevetoxins[6,7] and provide useful information about their receptor[s].⁸⁻¹⁰

An attractive bond disconnection across the oxocene ring of 2 revealed two domains (3 and 4) that could be coupled in the synthetic direction via a Wittig reaction and cyclized to produce the desired polycyclic framework.

This convergent synthesis began with the construction of intermediates 3 and 4 (Scheme 2). Swern oxidation of the alcohol 5⁵ (Scheme 1) followed by addition of MeMgBr and subsequent reoxidation gave rise to ketone 6 in 94% overall yield. After destillation, the liberated alcohol 7 was converted to the bromoacetate ester 8, which upon exposure to (MeO)₂P at 180 °C afforded the phosphonate 9 in 74% overall yield from 6. A modified Horner–Emmons¹¹ reaction was then used for the ring closure of 9 to 10 (88%). Reduction of 10 to the corresponding dihydropropynol 12 was achieved by sequential treatment with DibalH and BF₃·EtO/O/Et₂SiH via the intermediacy of lactol

![Figure 1. Structure of truncated brevetoxin B [AFGHIJK] (2) and retrosynthetic analysis.](https://example.com/figure1)

Scheme 1.¹ Synthesis of the AFG Ring System

![Diagram of the AFG Ring System](https://example.com/scheme1)

Reagents and conditions: (a) 2.0 equiv of (COCl)₂, 3.0 equiv of DMSO, CH₂Cl₂, –78 °C, then 7.0 equiv of Et₃N, 1 h, 100%; (b) 2.0 equiv of MeMgBr, THF, 0 °C, 1 h, 96%; (c) 2.0 equiv of (COCl)₂, 3.0 equiv of DMSO, CH₂Cl₂, –78 °C, then 7.0 equiv of Et₃N, 1 h, 98%; (d) 2.0 equiv of TBAF, THF, 25 °C, 2 h, 100%; (e) 2.0 equiv of Br₂·COCOCl, 4.0 equiv of pyridine, CH₂Cl₂, 0 °C, 5 h, 82%; (f) neat (MeO)₂P, 180 °C (sealed tube), 3 h, 90%; (g) 1.0 equiv of Ph₃P·CHNO₂, 2.0 equiv of LiCl, CH₂CN, 25 °C, 3 h, 88%; (h) 1.5 equiv of DibalH, CH₂Cl₂, –78 °C, 0.5 h, 98%; (i) 1.0 equiv of BF₃·EtO, 5.0 equiv of Et₂SiH, CH₂Cl₂, 10 °C, 0.5 h, 97%; (j) 2.0 equiv of Li·NH₃·THF, –78 °C, 1.5 h, 100%; (k) 1.0 equiv of TiCl₄, 3.0 equiv of pyridine, CH₂Cl₂, 25 °C, 12 h, 70%; (l) 5.0 equiv of NaI, acetone, 60 °C, 12 h, 83%; (m) 1.5 equiv of TMS-methylidene, CH₂Cl₂, 25 °C, 0.5 h, 100%; (n) 6.0 equiv of PPh₃, CH₂CN, 65 °C, 15 h, 100%; TBS = Si(2Me)₃, Bn = CH₃Ph, TMS = SiMe₃, Tt = tosylate.

11 95%. Debenzylation of 12 to the diol 13 followed by selective monotosylation and displacement with NaI of the primary tosylate 14 led to 15 in 58% overall yield. Finally, protection of the secondary alcohol in 15 as a TMS ether and treatment with PPh₃ gave phosphonium salt 3 in quantitative yield.

The construction of aldehyde 4 commenced with diol 17⁴ (Scheme 2), which was first protected as an acetone and then...
Scheme 2* Synthesis of the JUK Ring System 4

* Reagents and conditions: (a) 3 equiv of CH₂=C(OH)Me, 0.2 equiv of CSA, CH₂Cl₂, 25 °C, 4 h, 89%; (b) 2.0 equiv of TBAF, THF, 25 °C, 2 h, 97%; (c) 2.0 equiv of (COCl)₂, 3.0 equiv of DMSO, CH₂Cl₂, -78 °C, 0.5 h, then 7.0 equiv of Et₃N, 100%; (d) 2.0 equiv of Ph₃P=CHCO₂Me, CH₂Cl₂, 25 °C, 5 h, 96% (E:Z = 4:1); (e) H₂, Pd(OH)₂, THF, 25 °C, 40 psi, 1 h, 61%; (f) 2.0 equiv of LIAH₂, THF, 25 °C, 4 h, 92%; (g) 1.1 equiv of TBSOT, 2.0 equiv of Et₃N, 0.1 equiv of DMAP, CH₂Cl₂, 25 °C, 6 h, 95%; (h) 2.0 equiv of TBSOT, 3.0 equiv of 2,6-lutidine, CH₂Cl₂, 0 °C, 0.5 h, 100%; (i) 0.2 equiv of CSA, 1:1 CH₂Cl₂/MEOH, 0 °C, 2 h, 87%; (j) 1.0 equiv of TBSOT, 2.0 equiv of imidazole, DMF, 0 °C, 1 h, 94%; (k) 1.5 equiv of NMO, 0.2 equiv of TPAP, CH₂CN, 25 °C, 1 h, 96%; (l) 3.0 equiv of EISH, 1.1 equiv of Zn(OAc)₂, CH₂Cl₂, 25 °C, 3 h; (m) 0.2 equiv of CSA, MEOH, 25 °C, 1 h, 74% (over two steps); (n) 5.0 equiv of SO₂-pyridine, 5.0 equiv of Et₃N, 1:1 CH₂Cl₂/DMSO, 0 °C, 1.5 h, 92%. TBS = Si₂Bu₂Me₃, TPS = Si₂Bu₂Me₂, BN = CH₃Ph, NMO = 4-methylmorpholine N-oxide, TPAP = tetrapropylammonium persulfate.

converted via diisylolation, oxidation, and a Wittig reaction to the unsaturated ester 19 (ca. 4:1 E:Z isomers, 83% overall yield) through aldehyde 18. Sequential treatment of 19 with H₂/Pd(OH)₂ and LiAlH₄ followed by selective silylation of the resulting hydroxyl groups furnished 23 in 87% overall yield. Removal of the acetonide and selective protection of the primary alcohol, followed by oxidation of the secondary alcohol, provided the corresponding ketone 26 in 79% yield. Thiolactonization of 26 and hydrolytic cleavage of the primary TBS ether afforded alcohol 27, which was oxidized to the requisite aldehyde 4 (68% overall yield).

Generation of the ylide from 3, followed by reaction with aldehyde 4, produced the Z-olefin 28 (Scheme 3) in 57% yield (based on 3). Desilylation of 28, followed by AgClO₄-induced cyclization and desulfurization, provided oxocene 29 in 80% overall yield. Oxidation of 29 with PCC gave lactone 30 in 66% yield. Finally desilylation of 30, followed by oxidation and treatment of the resulting aldehyde 31 with Eschenmoser's salt, secured, upon desilylation, the targeted 2 in 61% overall yield. X-ray crystallographic analysis of 2 (mp 218 °C, from methanol/petroleum ether) confirmed its structure (see ORTEP drawing, Figure 2).

Truncated brevetroxin B [AFGHIJK] (2), lacking the BCDE ring segment of the parent compound (1), has a head-to-tail length of 20.4 Å as opposed to ca. 30 Å for 1. Biological studies with 2 revealed no binding to the brevetoxin B receptor, supporting the notion that the length of the molecule is crucial for biological activity. The described chemistry sets the stage for the total synthesis of the natural brevetroxin B (1) and for further chemical biology studies.

Scheme 3* Synthesis of Truncated Brevetoxin B (AFGHIJK) 2

* Reagents and conditions: (a) 1.0 equiv of n-BuLi, 2.0 equiv of HMPT, THF, -78 °C to 25 °C, 1 h, 97%; (b) 0.2 equiv of PPTS, 1:1 CH₂Cl₂/MeOH, 25 °C, 1 h, 91%; (c) 4.0 equiv of AgClO₄, 2.0 equiv of NaHCO₃, SiO₂, 4 Å molecular sieves, CH₂Cl₂, 25 °C, 30 h, 90%; (d) 4.0 equiv of Ph₃P=CH₂, 0.1 equiv of AIBN, toluene, 100 °C, 2 h, 98%; (e) 8.0 equiv of PCC, CH₂Cl₂, 60 °C (sealed tube), 4 h, 66%; (f) 2.0 equiv of TBAF, THF, 25 °C, 13 h, 99%; (g) 3.0 equiv of Dess-Martin periodinane, CH₂Cl₂, 25 °C, 2 h, 100%; (h) 2.0 equiv of Me₂N=CH₂, 20 equiv of Et₃N, CH₂Cl₂, 25 °C, 12 h, 99%; (i) HF-pyridine, CH₂Cl₂, 25 °C, 30 min, 97%. TBS = Si₂Bu₂Me₃, TPS = Si₂Bu₂Me₂, NMO = 4-methylmorpholine N-oxide.

Figure 2. ORTEP drawing of truncated brevetoxin B [AFGHIJK] 2.

Acknowledgment. We thank Drs. Raj Chadha, Gary Siuzdak, and Dee H. Huang for X-ray, mass, and NMR spectroscopic assistance. This work was financially supported by the National Institutes of Health and by fellowships from the Deutsche Forschungsgemeinschaft (J.T.), the Netherlands Organization for Scientific Research (NWO) (F.P.J.T.R.), UNITIKA Ltd. (M.S.), and Rhône Poulenc S. A. (E.U.).

Supplementary Material Available: Characterization data for compounds 2 (including X-ray crystallographic parameters), 16, 27-30, and 32 (19 pages); listing of observed and calculated structure factors for 2 (8 pages). This material is contained in many libraries on microfiche. Immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.